Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Qwen2.5-Math-1.5B - GGUF - Model creator: https://huggingface.co/unsloth/ - Original model: https://huggingface.co/unsloth/Qwen2.5-Math-1.5B/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Qwen2.5-Math-1.5B.Q2_K.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q2_K.gguf) | Q2_K | 0.63GB | | [Qwen2.5-Math-1.5B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q3_K_S.gguf) | Q3_K_S | 0.71GB | | [Qwen2.5-Math-1.5B.Q3_K.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q3_K.gguf) | Q3_K | 0.77GB | | [Qwen2.5-Math-1.5B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q3_K_M.gguf) | Q3_K_M | 0.77GB | | [Qwen2.5-Math-1.5B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q3_K_L.gguf) | Q3_K_L | 0.82GB | | [Qwen2.5-Math-1.5B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.IQ4_XS.gguf) | IQ4_XS | 0.84GB | | [Qwen2.5-Math-1.5B.Q4_0.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q4_0.gguf) | Q4_0 | 0.87GB | | [Qwen2.5-Math-1.5B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.IQ4_NL.gguf) | IQ4_NL | 0.88GB | | [Qwen2.5-Math-1.5B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q4_K_S.gguf) | Q4_K_S | 0.88GB | | [Qwen2.5-Math-1.5B.Q4_K.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q4_K.gguf) | Q4_K | 0.92GB | | [Qwen2.5-Math-1.5B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q4_K_M.gguf) | Q4_K_M | 0.92GB | | [Qwen2.5-Math-1.5B.Q4_1.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q4_1.gguf) | Q4_1 | 0.95GB | | [Qwen2.5-Math-1.5B.Q5_0.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q5_0.gguf) | Q5_0 | 1.02GB | | [Qwen2.5-Math-1.5B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q5_K_S.gguf) | Q5_K_S | 1.02GB | | [Qwen2.5-Math-1.5B.Q5_K.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q5_K.gguf) | Q5_K | 1.05GB | | [Qwen2.5-Math-1.5B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q5_K_M.gguf) | Q5_K_M | 1.05GB | | [Qwen2.5-Math-1.5B.Q5_1.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q5_1.gguf) | Q5_1 | 1.1GB | | [Qwen2.5-Math-1.5B.Q6_K.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q6_K.gguf) | Q6_K | 1.19GB | | [Qwen2.5-Math-1.5B.Q8_0.gguf](https://huggingface.co/RichardErkhov/unsloth_-_Qwen2.5-Math-1.5B-gguf/blob/main/Qwen2.5-Math-1.5B.Q8_0.gguf) | Q8_0 | 1.53GB | Original model description: --- base_model: Qwen/Qwen2.5-Math-1.5B language: - en library_name: transformers license: apache-2.0 tags: - unsloth - transformers --- # Finetune Llama 3.1, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth! We have a Qwen 2.5 (all model sizes) [free Google Colab Tesla T4 notebook](https://colab.research.google.com/drive/1Kose-ucXO1IBaZq5BvbwWieuubP7hxvQ?usp=sharing). Also a [Qwen 2.5 conversational style notebook](https://colab.research.google.com/drive/1qN1CEalC70EO1wGKhNxs1go1W9So61R5?usp=sharing). [](https://discord.gg/unsloth) [](https://github.com/unslothai/unsloth) ## ✨ Finetune for Free All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face. | Unsloth supports | Free Notebooks | Performance | Memory use | |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------| | **Llama-3.1 8b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less | | **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less | | **Gemma-2 9b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less | | **Mistral 7b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less | | **TinyLlama** | [▶️ Start on Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) | 3.9x faster | 74% less | | **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less | - This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates. - This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr. - \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster. # Qwen2.5-Math-1.5B > [!Warning] >
transformers
integrated Qwen2 codes since 4.37.0
.
>
>