--- license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - trl - sft - generated_from_trainer model-index: - name: Llams_3.1_8B_instruct_behaviour_cloning_extra_things_updated_grouped results: [] library_name: peft --- # Llams_3.1_8B_instruct_behaviour_cloning_extra_things_updated_grouped This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1928 - Model Preparation Time: 0.0065 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - _load_in_8bit: False - _load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 - bnb_4bit_quant_storage: uint8 - load_in_4bit: True - load_in_8bit: False ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | |:-------------:|:------:|:----:|:---------------:|:----------------------:| | 0.0929 | 0.9996 | 1236 | 0.1423 | 0.0065 | | 0.0689 | 2.0 | 2473 | 0.1724 | 0.0065 | | 0.0588 | 2.9988 | 3708 | 0.1928 | 0.0065 | ### Framework versions - PEFT 0.4.0 - Transformers 4.44.0 - Pytorch 2.3.1+cu121 - Datasets 2.13.0 - Tokenizers 0.19.1