File size: 4,759 Bytes
1a285a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e443128
 
 
 
 
 
 
 
 
 
 
 
035f9d6
e443128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7876a9f
e443128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
035f9d6
e443128
2360d98
e443128
 
 
 
 
 
 
 
7b2ec9d
e443128
7b2ec9d
e443128
 
7b2ec9d
 
 
e443128
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---
language:
  - en
tags:
  - gpt
  - mixture-of-experts
  - monte-carlo-tree-search
  - language-model
license: mit
datasets:
  - Finewebedu
metrics:
  - perplexity
  - accuracy
---

# GPT-MoE-MCTS: GPT with Mixture of Experts and Monte Carlo Tree Search

## Table of Contents
1. [Introduction](#introduction)
2. [Key Features](#key-features)
3. [Model Architecture](#model-architecture)
4. [Installation](#installation)
5. [Usage](#usage)
6. [Training](#training)
7. [Evaluation](#evaluation)
8. [MCTS Decoding](#mcts-decoding)
9. [Contributing](#contributing)


## Introduction

GPT-MoE-MCTS is an advanced language model that combines the power of GPT (Generative Pre-trained Transformer) with Mixture of Experts (MoE) and Monte Carlo Tree Search (MCTS) decoding. This model is designed to provide high-quality text generation with improved efficiency and performance.

## Key Features

- **GPT-based Architecture**: Utilizes the powerful GPT architecture for language modeling.
- **Mixture of Experts**: Incorporates a dynamic routing system to specialize different parts of the network for different inputs.
- **FlashAttention3**: Implements an optimized attention mechanism for improved efficiency.
- **Monte Carlo Tree Search Decoding**: Uses MCTS during inference for higher quality text generation.
- **Hugging Face Compatible**: Easily integrates with the Hugging Face Transformers library.

## Model Architecture

The GPT-MoE-MCTS model consists of the following key components:

1. **Token and Positional Embeddings**: Converts input tokens into embeddings and adds positional information.
2. **Transformer Blocks with MoE**: Multiple layers of transformer blocks, each incorporating:
   - FlashAttention3: An optimized attention mechanism.
   - Mixture of Experts Layer: A dynamic routing system for specialized processing.
   - Feed-Forward Network: Standard MLP for additional processing.
3. **Output Layer**: Final layer normalization and projection to vocabulary logits.

## Installation

To install the GPT-MoE-MCTS model, follow these steps:

```bash
git clone https://github.com/RPasquale/gpt-moe-mcts.git
cd gpt-moe-mcts
pip install -r requirements.txt
```

## Usage

Here's a basic example of how to use the GPT-MoE-MCTS model:

```python
from transformers import GPT2Tokenizer
from modeling_gpt_moe_mcts import GPTMoEMCTSModel
from configuration_gpt_moe_mcts import GPTMoEMCTSConfig

# Initialize configuration and model
config = GPTMoEMCTSConfig()
model = GPTMoEMCTSModel(config)

# Initialize tokenizer (using GPT2Tokenizer as a base)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

# Prepare input
text = "Hello, how are you?"
inputs = tokenizer(text, return_tensors="pt")

# Forward pass
outputs = model(**inputs)

# Get the predicted next token
next_token_logits = outputs.logits[0, -1, :]
next_token = next_token_logits.argmax()

# Decode the predicted token
predicted_text = tokenizer.decode(next_token)

print(f"Input: {text}")
print(f"Predicted next token: {predicted_text}")
```

## Training

To train the GPT-MoE-MCTS model on your own data:

1. Prepare your dataset in the format of tokenized .npy files.
2. Adjust the hyperparameters in the `train_model()` function in `train.py`.
3. Run the training script:

```bash
python train.py
```

The script will automatically save checkpoints and display training progress.

## Evaluation

To evaluate the model's performance:

```python
from eval_utils import evaluate_model

perplexity, accuracy = evaluate_model(model, eval_dataloader)
print(f"Perplexity: {perplexity}, Accuracy: {accuracy}")
```

## MCTS Decoding

The GPT-MoE-MCTS model uses Monte Carlo Tree Search for decoding during inference. To use MCTS decoding:

```python
from mcts_decode import mcts_decode

generated_text = mcts_decode(model, input_text, max_length=50, num_simulations=100)
print(f"Generated text: {generated_text}")
```

## Contributing

We welcome contributions to the GPT-MoE-MCTS project! If you're interested in contributing, please visit our [GitHub repository](https://github.com/RPasquale/gpt-moe-mcts) for more information on how to get involved. You can submit issues, feature requests, or pull requests there.


---

For more detailed information about the model architecture, training process, and advanced usage, please refer to our [documentation](docs/index.md).

If you use GPT-MoE-MCTS in your research, please cite:

```
@misc{GPT-MoE-MCTS,
  author = {Robbie Pasquale},
  title = {GPT-MoE-MCTS: GPT with Mixture of Experts and Monte Carlo Tree Search},
  year = {2024},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/RPasquale/gpt-moe-mcts}},
  version = {1.0.0},
  note = {This project is currently in development.}
}
```