gpt-moe-mcts / modeling_gpt_moe_mcts.py
RobbiePasquale's picture
Initial commit of GPT-MoE-MCTS model
e443128
raw
history blame
7.86 kB
import torch
import torch.nn as nn
from torch.nn import functional as F
from transformers import PreTrainedModel
from .configuration_gpt_moe_mcts import GPTMoEMCTSConfig
class FlashAttention3(nn.Module):
def __init__(self, d_model, n_heads, block_size_q, block_size_kv, num_blocks_kv, device='cuda'):
super(FlashAttention3, self).__init__()
self.d_model = d_model
self.n_heads = n_heads
self.block_size_q = block_size_q
self.block_size_kv = block_size_kv
self.num_blocks_kv = num_blocks_kv
self.device = device
self.q_proj = nn.Linear(d_model, d_model).to(device)
self.k_proj = nn.Linear(d_model, d_model).to(device)
self.v_proj = nn.Linear(d_model, d_model).to(device)
self.out_proj = nn.Linear(d_model, d_model).to(device)
def forward(self, x):
B, T, C = x.size()
Q = self.q_proj(x).view(B, T, self.n_heads, C // self.n_heads).transpose(1, 2)
K = self.k_proj(x).view(B, T, self.n_heads, C // self.n_heads).transpose(1, 2)
V = self.v_proj(x).view(B, T, self.n_heads, C // self.n_heads).transpose(1, 2)
O = torch.zeros(B, self.n_heads, T, C // self.n_heads).to(self.device)
L = torch.zeros(B, self.n_heads, T).to(self.device)
M = torch.full((B, self.n_heads, T), -float('inf')).to(self.device)
for i in range(0, T, self.block_size_q):
Q_block = Q[:, :, i:i+self.block_size_q]
O_block = torch.zeros_like(Q_block).to(self.device)
L_block = torch.zeros(B, self.n_heads, Q_block.size(2)).to(self.device)
M_block = torch.full((B, self.n_heads, Q_block.size(2)), -float('inf')).to(self.device)
for j in range(0, T, self.block_size_kv):
K_block = K[:, :, j:j+self.block_size_kv]
V_block = V[:, :, j:j+self.block_size_kv]
S_block = torch.matmul(Q_block, K_block.transpose(-2, -1))
M_block_old = M_block
M_block = torch.max(M_block, S_block.max(dim=-1).values)
exp_S_block = torch.exp(S_block - M_block.unsqueeze(-1))
L_block = torch.exp(M_block_old - M_block) * L_block + exp_S_block.sum(dim=-1)
O_block += torch.matmul(exp_S_block, V_block)
O_block /= L_block.unsqueeze(-1)
O[:, :, i:i+self.block_size_q] = O_block
O = O.transpose(1, 2).contiguous().view(B, T, self.n_heads * (C // self.n_heads))
O = self.out_proj(O)
return O
# Define the MLP module
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU(approximate='tanh')
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
self.dropout = nn.Dropout(config.dropout)
self.c_proj.scale_init = 1
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
x = self.dropout(x)
return x
# Define the MixtureOfExperts module
class MixtureOfExperts(nn.Module):
def __init__(self, config, num_experts, expert_layers):
super().__init__()
self.num_experts = num_experts
self.expert_layers = expert_layers
self.experts = nn.ModuleList([self._create_expert(config) for _ in range(num_experts)])
self.gate = nn.Linear(config.n_embd, num_experts)
def _create_expert(self, config):
layers = []
for _ in range(self.expert_layers):
layers.append(FlashAttention3(d_model=config.n_embd, n_heads=config.n_head, block_size_q=32, block_size_kv=32, num_blocks_kv=4))
layers.append(nn.LayerNorm(config.n_embd))
layers.append(MLP(config))
return nn.Sequential(*layers)
def forward(self, x):
B, T, C = x.size()
gate_scores = self.gate(x)
gate_probs = F.softmax(gate_scores, dim=-1)
expert_outputs = torch.stack([expert(x) for expert in self.experts], dim=1)
gate_probs = gate_probs.unsqueeze(-1)
gate_probs = gate_probs.permute(0, 2, 1, 3)
output = torch.sum(gate_probs * expert_outputs, dim=1)
return output
# Define the BlockWithMoE module
class BlockWithMoE(nn.Module):
def __init__(self, config, num_experts=4, expert_layers=2, block_size_q=32, block_size_kv=32, num_blocks_kv=4, device='cuda'):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = FlashAttention3(d_model=config.n_embd, n_heads=config.n_head, block_size_q=block_size_q, block_size_kv=block_size_kv, num_blocks_kv=num_blocks_kv, device=device)
self.dropout1 = nn.Dropout(config.dropout)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.moe = MixtureOfExperts(config, num_experts, expert_layers)
self.dropout2 = nn.Dropout(config.dropout)
self.ln_3 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
self.dropout3 = nn.Dropout(config.dropout)
def forward(self, x):
B, T, C = x.size()
attn_output = self.attn(x)
x = x + attn_output
x = self.dropout1(x)
x = x + self.moe(self.ln_2(x))
x = self.dropout2(x)
x = x + self.mlp(self.ln_3(x))
x = self.dropout3(x)
return x
class GPTMoEMCTSPreTrainedModel(PreTrainedModel):
config_class = GPTMoEMCTSConfig
base_model_prefix = "gpt_moe_mcts"
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
class GPTMoEMCTSModel(GPTMoEMCTSPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.transformer = nn.ModuleDict(dict(
wte=nn.Embedding(config.vocab_size, config.n_embd),
wpe=nn.Embedding(config.block_size, config.n_embd),
h=nn.ModuleList([BlockWithMoE(config) for _ in range(config.n_layer)]),
ln_f=nn.LayerNorm(config.n_embd),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.transformer.wte.weight = self.lm_head.weight
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Forward pass
B, T = input_ids.size()
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
pos = torch.arange(0, T, dtype=torch.long, device=input_ids.device)
pos_emb = self.transformer.wpe(pos)
tok_emb = self.transformer.wte(input_ids)
x = tok_emb + pos_emb
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
loss = None
if labels is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1))
if not return_dict:
output = (logits,) + (loss,) if loss is not None else (logits,)
return output
return {
"logits": logits,
"loss": loss,
}