--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBert_Dataset59KBoDuoi results: [] --- # PhoBert_Dataset59KBoDuoi This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2985 - Accuracy: 0.9307 - F1: 0.9312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:| | No log | 1.0230 | 200 | 0.1511 | 0.9390 | 0.9395 | | No log | 2.0460 | 400 | 0.1571 | 0.9351 | 0.9356 | | No log | 3.0691 | 600 | 0.1750 | 0.9340 | 0.9347 | | 0.15 | 4.0921 | 800 | 0.1731 | 0.9334 | 0.9339 | | 0.15 | 5.1151 | 1000 | 0.1912 | 0.9321 | 0.9326 | | 0.15 | 6.1381 | 1200 | 0.2302 | 0.9273 | 0.9283 | | 0.15 | 7.1611 | 1400 | 0.2180 | 0.9325 | 0.9330 | | 0.0918 | 8.1841 | 1600 | 0.2620 | 0.9292 | 0.9300 | | 0.0918 | 9.2072 | 1800 | 0.2363 | 0.9326 | 0.9329 | | 0.0918 | 10.2302 | 2000 | 0.2687 | 0.9243 | 0.9252 | | 0.0918 | 11.2532 | 2200 | 0.2621 | 0.9312 | 0.9317 | | 0.0608 | 12.2762 | 2400 | 0.2741 | 0.9306 | 0.9312 | | 0.0608 | 13.2992 | 2600 | 0.2614 | 0.9302 | 0.9306 | | 0.0608 | 14.3223 | 2800 | 0.2830 | 0.9317 | 0.9321 | | 0.0608 | 15.3453 | 3000 | 0.2874 | 0.9285 | 0.9291 | | 0.0429 | 16.3683 | 3200 | 0.2844 | 0.9318 | 0.9323 | | 0.0429 | 17.3913 | 3400 | 0.2836 | 0.9310 | 0.9313 | | 0.0429 | 18.4143 | 3600 | 0.2885 | 0.9309 | 0.9312 | | 0.0429 | 19.4373 | 3800 | 0.2985 | 0.9307 | 0.9312 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1