--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBert_Dataset59KBoDuoi results: [] --- # PhoBert_Dataset59KBoDuoi This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3898 - Accuracy: 0.8943 - F1: 0.8949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:| | No log | 1.0230 | 200 | 0.3239 | 0.8676 | 0.8657 | | No log | 2.0460 | 400 | 0.2895 | 0.8761 | 0.8750 | | No log | 3.0691 | 600 | 0.2810 | 0.8862 | 0.8865 | | 0.2918 | 4.0921 | 800 | 0.2887 | 0.8842 | 0.8856 | | 0.2918 | 5.1151 | 1000 | 0.2770 | 0.8938 | 0.8945 | | 0.2918 | 6.1381 | 1200 | 0.3323 | 0.8837 | 0.8856 | | 0.2918 | 7.1611 | 1400 | 0.3013 | 0.8935 | 0.8942 | | 0.1744 | 8.1841 | 1600 | 0.3146 | 0.8919 | 0.8935 | | 0.1744 | 9.2072 | 1800 | 0.3165 | 0.8977 | 0.8978 | | 0.1744 | 10.2302 | 2000 | 0.3452 | 0.8889 | 0.8903 | | 0.1744 | 11.2532 | 2200 | 0.3487 | 0.8956 | 0.8964 | | 0.1208 | 12.2762 | 2400 | 0.3420 | 0.8956 | 0.8963 | | 0.1208 | 13.2992 | 2600 | 0.3441 | 0.8983 | 0.8984 | | 0.1208 | 14.3223 | 2800 | 0.3713 | 0.8962 | 0.8966 | | 0.1208 | 15.3453 | 3000 | 0.3696 | 0.8962 | 0.8968 | | 0.0881 | 16.3683 | 3200 | 0.3812 | 0.8957 | 0.8964 | | 0.0881 | 17.3913 | 3400 | 0.3824 | 0.8952 | 0.8958 | | 0.0881 | 18.4143 | 3600 | 0.3838 | 0.8975 | 0.8978 | | 0.0881 | 19.4373 | 3800 | 0.3898 | 0.8943 | 0.8949 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1