Edit model card

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - NL dataset. This model is also available with a language model which improves these results. This model can be found at https://huggingface.co/RuudVelo/wav2vec2-large-xls-r-1b-nl-lm. The Common Voice 8 Dutch test Wer is 9.73 of that model. It achieves the following results on the evaluation set:

  • Loss: 0.1479
  • Wer: 0.1156

Model description

Model fine-tuned using the wav2vec-als-r-1b model architecture

Intended uses & limitations

More information needed

Training and evaluation data

Model has been trained on Common Voice 8 Dutch

Training procedure

Training hyperparameters

Model parameters can be found under Files and versions in the run.sh file.

Training results

Training Loss Epoch Step Validation Loss Wer
1.2223 0.52 500 0.3866 0.3425
1.0748 1.03 1000 0.2574 0.2169
1.0416 1.55 1500 0.2177 0.1946
0.9951 2.06 2000 0.2008 0.1760
0.975 2.58 2500 0.1961 0.1751
0.9461 3.1 3000 0.1989 0.1782
0.9381 3.61 3500 0.1928 0.1699
0.934 4.13 4000 0.1923 0.1633
0.9322 4.64 4500 0.1871 0.1634
0.9012 5.16 5000 0.1890 0.1702
0.9045 5.68 5500 0.1882 0.1740
0.8826 6.19 6000 0.1856 0.1575
0.8848 6.71 6500 0.1861 0.1617
0.8723 7.22 7000 0.1927 0.1646
0.8725 7.74 7500 0.1798 0.1531
0.8573 8.26 8000 0.1781 0.1587
0.8633 8.77 8500 0.1852 0.1628
0.8603 9.29 9000 0.1833 0.1601
0.8421 9.8 9500 0.1788 0.1543
0.8404 10.32 10000 0.1844 0.1556
0.8342 10.84 10500 0.1770 0.1538
0.8161 11.35 11000 0.1821 0.1567
0.8371 11.87 11500 0.1909 0.1629
0.8083 12.38 12000 0.1778 0.1498
0.806 12.9 12500 0.1802 0.1547
0.8013 13.42 13000 0.1859 0.1584
0.7913 13.93 13500 0.1875 0.1517
0.8063 14.45 14000 0.1799 0.1571
0.7991 14.96 14500 0.1792 0.1538
0.7843 15.48 15000 0.1753 0.1464
0.7905 16.0 15500 0.1784 0.1508
0.7808 16.51 16000 0.1771 0.1485
0.7743 17.03 16500 0.1795 0.1491
0.7833 17.54 17000 0.1722 0.1484
0.7763 18.06 17500 0.1767 0.1518
0.7698 18.58 18000 0.1720 0.1460
0.7571 19.09 18500 0.1735 0.1478
0.7673 19.61 19000 0.1817 0.1511
0.7415 20.12 19500 0.1763 0.1481
0.751 20.64 20000 0.1742 0.1484
0.7563 21.16 20500 0.1810 0.1611
0.7423 21.67 21000 0.1817 0.1557
0.7242 22.19 21500 0.1690 0.1446
0.7251 22.7 22000 0.1684 0.1446
0.7302 23.22 22500 0.1735 0.1430
0.733 23.74 23000 0.1720 0.1454
0.7128 24.25 23500 0.1668 0.1383
0.7184 24.77 24000 0.1635 0.1377
0.7015 25.28 24500 0.1646 0.1389
0.7198 25.8 25000 0.1775 0.1462
0.7178 26.32 25500 0.1705 0.1419
0.7199 26.83 26000 0.1649 0.1416
0.6981 27.35 26500 0.1724 0.1418
0.6886 27.86 27000 0.1633 0.1382
0.6922 28.38 27500 0.1698 0.1420
0.6833 28.9 28000 0.1611 0.1351
0.6798 29.41 28500 0.1639 0.1365
0.6711 29.93 29000 0.1668 0.1358
0.6762 30.44 29500 0.1682 0.1355
0.6594 30.96 30000 0.1629 0.1345
0.6664 31.48 30500 0.1625 0.1321
0.6838 31.99 31000 0.1597 0.1372
0.6603 32.51 31500 0.1583 0.1302
0.6468 33.02 32000 0.1595 0.1322
0.6464 33.54 32500 0.1609 0.1315
0.6623 34.06 33000 0.1622 0.1366
0.6414 34.57 33500 0.1587 0.1330
0.6242 35.09 34000 0.1614 0.1337
0.632 35.6 34500 0.1568 0.1272
0.6346 36.12 35000 0.1583 0.1274
0.6143 36.64 35500 0.1576 0.1264
0.6208 37.15 36000 0.1621 0.1263
0.6185 37.67 36500 0.1623 0.1270
0.6128 38.18 37000 0.1604 0.1268
0.6151 38.7 37500 0.1593 0.1246
0.6082 39.22 38000 0.1532 0.1238
0.6 39.73 38500 0.1524 0.1224
0.6032 40.25 39000 0.1521 0.1212
0.6016 40.76 39500 0.1551 0.1215
0.6009 41.28 40000 0.1523 0.1215
0.5875 41.8 40500 0.1541 0.1216
0.608 42.31 41000 0.1536 0.1209
0.5876 42.83 41500 0.1567 0.1211
0.5714 43.34 42000 0.1532 0.1217
0.5756 43.86 42500 0.1516 0.1196
0.5719 44.38 43000 0.1491 0.1191
0.5829 44.89 43500 0.1497 0.1193
0.5664 45.41 44000 0.1487 0.1173
0.5707 45.92 44500 0.1470 0.1164
0.5696 46.44 45000 0.1479 0.1161
0.5767 46.96 45500 0.1492 0.1175
0.5573 47.47 46000 0.1471 0.1165
0.5625 47.99 46500 0.1484 0.1168
0.5671 48.5 47000 0.1474 0.1162
0.5484 49.02 47500 0.1479 0.1158
0.555 49.54 48000 0.1477 0.1157

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.3
  • Tokenizers 0.11.0
Downloads last month
25
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train RuudVelo/wav2vec2-large-xls-r-1b-nl

Evaluation results