--- license: gemma base_model: google/gemma-2-27b tags: - trl - sft - generated_from_trainer model-index: - name: collapse_gemma-2-27b_hs2_accumulate_iter1_sftsd2 results: [] --- # collapse_gemma-2-27b_hs2_accumulate_iter1_sftsd2 This model is a fine-tuned version of [google/gemma-2-27b](https://huggingface.co/google/gemma-2-27b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9056 - Num Input Tokens Seen: 5236236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 4 - eval_batch_size: 16 - seed: 2 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | No log | 0 | 0 | 1.1282 | 0 | | 0.9652 | 0.0511 | 5 | 0.9817 | 270332 | | 0.9707 | 0.1021 | 10 | 0.9530 | 541500 | | 0.9592 | 0.1532 | 15 | 0.9413 | 812584 | | 0.9301 | 0.2043 | 20 | 0.9341 | 1083956 | | 0.9111 | 0.2553 | 25 | 0.9296 | 1356232 | | 0.9056 | 0.3064 | 30 | 0.9263 | 1618536 | | 0.9533 | 0.3575 | 35 | 0.9235 | 1882576 | | 0.926 | 0.4086 | 40 | 0.9205 | 2154872 | | 0.8827 | 0.4596 | 45 | 0.9183 | 2423272 | | 0.8874 | 0.5107 | 50 | 0.9162 | 2695312 | | 0.9546 | 0.5618 | 55 | 0.9150 | 2965956 | | 0.8911 | 0.6128 | 60 | 0.9133 | 3236124 | | 0.8428 | 0.6639 | 65 | 0.9119 | 3504696 | | 0.9158 | 0.7150 | 70 | 0.9108 | 3779560 | | 0.9392 | 0.7660 | 75 | 0.9097 | 4047404 | | 0.9049 | 0.8171 | 80 | 0.9091 | 4319468 | | 0.8697 | 0.8682 | 85 | 0.9082 | 4590728 | | 0.9536 | 0.9192 | 90 | 0.9067 | 4860344 | | 0.9586 | 0.9703 | 95 | 0.9057 | 5128848 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1