rumourscape
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,120 @@
|
|
1 |
---
|
2 |
-
library_name:
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
Use the code below to get started with the model.
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
|
95 |
-
|
96 |
|
97 |
-
|
|
|
|
|
98 |
|
99 |
-
|
100 |
|
101 |
-
|
|
|
102 |
|
103 |
-
|
104 |
|
105 |
-
|
106 |
|
107 |
-
|
108 |
|
109 |
-
|
|
|
110 |
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
|
153 |
-
|
154 |
|
155 |
-
|
156 |
|
157 |
-
|
|
|
|
|
158 |
|
159 |
-
### Compute Infrastructure
|
160 |
|
161 |
-
|
162 |
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
-
[More Information Needed]
|
166 |
|
167 |
-
|
168 |
|
169 |
-
[
|
170 |
|
171 |
-
## Citation
|
172 |
|
173 |
-
|
174 |
|
175 |
**BibTeX:**
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
library_name: peft
|
3 |
+
license: cc-by-4.0
|
4 |
+
datasets:
|
5 |
+
- SPRINGLab/shiksha
|
6 |
+
- SPRINGLab/BPCC_cleaned
|
7 |
+
language:
|
8 |
+
- bn
|
9 |
+
- gu
|
10 |
+
- hi
|
11 |
+
- mr
|
12 |
+
- ml
|
13 |
+
- kn
|
14 |
+
- ta
|
15 |
+
- te
|
16 |
+
- en
|
17 |
+
metrics:
|
18 |
+
- bleu
|
19 |
+
base_model:
|
20 |
+
- facebook/nllb-200-3.3B
|
21 |
+
pipeline_tag: translation
|
22 |
---
|
23 |
|
24 |
+
# Shiksha MT Model Card
|
|
|
|
|
|
|
|
|
25 |
|
26 |
## Model Details
|
27 |
|
28 |
+
### 1. Model Description
|
|
|
|
|
29 |
|
30 |
+
- **Developed by:** [SPRING Lab](https://asr.iitm.ac.in)
|
31 |
+
- **Model type:** LoRA Adaptor
|
32 |
+
- **Language(s) (NLP):** Bengali, Gujarati, Hindi, Marathi, Malayalam, Kannada, Tamil, Telugu
|
33 |
+
- **License:** CC-BY-4.0
|
34 |
+
- **Finetuned from model:** [NLLB-200 3.3B](https://huggingface.co/facebook/nllb-200-3.3B)
|
35 |
|
36 |
+
### 2. Model Sources
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
- **Paper:** https://arxiv.org/abs/2412.09025
|
39 |
+
- **Demo:** https://asr.iitm.ac.in/demo/ttt
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
## Uses
|
42 |
|
43 |
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
## How to Get Started with the Model
|
47 |
|
48 |
Use the code below to get started with the model.
|
49 |
|
50 |
+
```python
|
51 |
+
import torch
|
52 |
+
from peft import AutoPeftModelForSeq2SeqLM
|
53 |
+
from transformers import NllbTokenizerFast
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
56 |
|
57 |
+
# Load model and tokenizer from local checkpoint
|
58 |
+
model = AutoPeftModelForSeq2SeqLM.from_pretrained("SPRINGLab/shiksha-MT-nllb-3.3B", device_map=device)
|
59 |
+
tokenizer = NllbTokenizerFast.from_pretrained("facebook/nllb-200-3.3B")
|
60 |
|
61 |
+
input_text = "Welcome back to the lecture series in Cell Culture."
|
62 |
|
63 |
+
# Lang codes: https://github.com/facebookresearch/flores/tree/main/flores200
|
64 |
+
tgt_lang = "hin_Deva"
|
65 |
|
66 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
|
67 |
|
68 |
+
output = model.generate(input_ids=inputs["input_ids"].to(device), max_new_tokens=256, forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang))
|
69 |
|
70 |
+
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
71 |
|
72 |
+
print(output_text[0])
|
73 |
+
```
|
74 |
|
|
|
75 |
|
76 |
+
## Training Details
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
### 1. Training Data
|
79 |
|
80 |
+
We used the following datasets for training this adapter:
|
81 |
|
82 |
+
Shiksha: https://huggingface.co/datasets/SPRINGLab/shiksha
|
83 |
+
<br>
|
84 |
+
BPCC-cleaned: https://huggingface.co/datasets/SPRINGLab/BPCC_cleaned
|
85 |
|
|
|
86 |
|
87 |
+
#### 2. Training Hyperparameters
|
88 |
|
89 |
+
- peft-type: LORA
|
90 |
+
- rank: 256
|
91 |
+
- lora alpha: 256
|
92 |
+
- lora dropout: 0.1
|
93 |
+
- rslora: True
|
94 |
+
- target modules: all-linear
|
95 |
+
- learning rate: 4e-5
|
96 |
+
- optimizer: adafactor
|
97 |
+
- data-type: BF-16
|
98 |
+
- epochs: 1
|
99 |
|
|
|
100 |
|
101 |
+
### 3. Compute Infrastructure
|
102 |
|
103 |
+
We used 8 x A100 40GB GPUs for training this adapter. We would like to thank [CDAC](https://cdac.in) for providing the compute resources.
|
104 |
|
105 |
+
## Citation
|
106 |
|
107 |
+
If you use this model in your work, please cite us:
|
108 |
|
109 |
**BibTeX:**
|
110 |
+
```bibtex
|
111 |
+
@misc{joglekar2024shikshatechnicaldomainfocused,
|
112 |
+
title={Shiksha: A Technical Domain focused Translation Dataset and Model for Indian Languages},
|
113 |
+
author={Advait Joglekar and Srinivasan Umesh},
|
114 |
+
year={2024},
|
115 |
+
eprint={2412.09025},
|
116 |
+
archivePrefix={arXiv},
|
117 |
+
primaryClass={cs.CL},
|
118 |
+
url={https://arxiv.org/abs/2412.09025},
|
119 |
+
}
|
120 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|