from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.document_loaders import PyPDFLoader, DirectoryLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
DATA_PATH = 'Files/' | |
DB_FAISS_PATH = 'vectorstore/db_faiss' | |
# Create vector database | |
def create_vector_db(): | |
loader = DirectoryLoader(DATA_PATH, | |
glob='*.pdf', | |
loader_cls=PyPDFLoader) | |
documents = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, | |
chunk_overlap=50) | |
texts = text_splitter.split_documents(documents) | |
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2', | |
model_kwargs={'device': 'cpu'}) | |
db = FAISS.from_documents(texts, embeddings) | |
db.save_local(DB_FAISS_PATH) | |
if __name__ == "__main__": | |
create_vector_db() |