from langchain.document_loaders import PyPDFLoader, DirectoryLoader from langchain import PromptTemplate from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.llms import CTransformers from langchain.chains import RetrievalQA import chainlit as cl DB_FAISS_PATH = 'vectorstore/db_faiss' custom_prompt_template = """Use the following pieces of information to answer the user's questions. If you don't know the answer, just say that you don't know, but don't try to make up an answer. Context: {context} Question: {question} Only return the helpful answer below and nothing else. Helpful answer: """ def set_custom_prompt(): """ Prompt template for QA retrieval for each vectorstore """ prompt = PromptTemplate(template=custom_prompt_template, input_variables=['context', 'question']) return prompt #Retrieval QA Chain def retrieval_qa_chain(llm, prompt, db): qa_chain = RetrievalQA.from_chain_type(llm=llm, chain_type='stuff', retriever=db.as_retriever(search_kwargs={'k': 2}), return_source_documents=True, chain_type_kwargs={'prompt': prompt} ) return qa_chain #Loading the model def load_llm(): # Load the locally downloaded model here llm = CTransformers( model = "llama-2-7b-chat.ggmlv3.q8_0.bin", model_type="llama", max_new_tokens = 512, temperature = 0.5 ) return llm #QA Model Function def qa_bot(): embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}) db = FAISS.load_local(DB_FAISS_PATH, embeddings) llm = load_llm() qa_prompt = set_custom_prompt() qa = retrieval_qa_chain(llm, qa_prompt, db) return qa #output function def final_result(query): qa_result = qa_bot() response = qa_result({'query': query}) return response #chainlit code @cl.on_chat_start async def start(): chain = qa_bot() msg = cl.Message(content="Starting the bot...") await msg.send() msg.content = "Hi, Welcome to AstroBot. What is your query?" await msg.update() cl.user_session.set("chain", chain) @cl.on_message async def main(message): chain = cl.user_session.get("chain") cb = cl.AsyncLangchainCallbackHandler( stream_final_answer=True, answer_prefix_tokens=["FINAL", "ANSWER"] ) cb.answer_reached = True res = await chain.acall(message, callbacks=[cb]) answer = res["result"] sources = res["source_documents"] if sources: answer += f"\nSources:" + str(sources) else: answer += "\nNo sources found" await cl.Message(content=answer).send()