--- library_name: transformers license: other base_model: saves/Yi-1.5-9B-pt-241124 tags: - llama-factory - full - generated_from_trainer model-index: - name: Yi-1.5-9B-sft-241128 results: [] --- # Yi-1.5-9B-sft-241128 This model is a fine-tuned version of [saves/Yi-1.5-9B-pt-241124](https://huggingface.co/saves/Yi-1.5-9B-pt-241124) on the chinese-medical-dialogue, the CMB, the cMedQA2, the CMExam, the CMtMedQA, the COIG-CQIA-full, the COIG_full, the HuatuoGPT_sft_data_v, the huatuo_encyclopedia_q, the huatuo_lite, the imcs21, the Med-single-choice, the Medical_dialogue_system_en_single_turn, the qizhengpt-sft-20, the self_cognition, the sharegpt_zh_38K_format, the shennong, the shibing642-medica, the tigerbot_sft_data, the xywy-KG and the zhongyi-zhiku datasets. It achieves the following results on the evaluation set: - Loss: 1.4478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 1.6544 | 0.1277 | 1000 | 1.6105 | | 1.5595 | 0.2554 | 2000 | 1.5668 | | 1.5297 | 0.3830 | 3000 | 1.5394 | | 1.5637 | 0.5107 | 4000 | 1.5188 | | 1.5051 | 0.6384 | 5000 | 1.5028 | | 1.4765 | 0.7661 | 6000 | 1.4895 | | 1.4504 | 0.8938 | 7000 | 1.4779 | | 1.4084 | 1.0215 | 8000 | 1.4716 | | 1.4292 | 1.1491 | 9000 | 1.4653 | | 1.4349 | 1.2768 | 10000 | 1.4597 | | 1.4442 | 1.4045 | 11000 | 1.4548 | | 1.422 | 1.5322 | 12000 | 1.4517 | | 1.3986 | 1.6599 | 13000 | 1.4491 | | 1.3949 | 1.7875 | 14000 | 1.4482 | | 1.4241 | 1.9152 | 15000 | 1.4478 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1