File size: 1,416 Bytes
fbe5a5b c161a9f b5c068c fbe5a5b b5c068c fbe5a5b b5c068c fbe5a5b a2673e9 fbe5a5b a2673e9 fbe5a5b a2673e9 fbe5a5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
tags:
- autotrain
- text-classification
language:
- unk
widget:
- text: "I love AutoTrain 🤗"
datasets:
- Sachinkelenjaguri/autotrain-data-sachin-test-summarizer
co2_eq_emissions:
emissions: 0.001210370183555198
---
# Class:
0- Risk <br>
1-Neutral <br>
2-Oppertunity <br>
# Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 55107128708
- CO2 Emissions (in grams): 0.0012
## Validation Metrics
- Loss: 0.516
- Accuracy: 0.806
- Macro F1: 0.783
- Micro F1: 0.806
- Weighted F1: 0.806
- Macro Precision: 0.777
- Micro Precision: 0.806
- Weighted Precision: 0.809
- Macro Recall: 0.793
- Micro Recall: 0.806
- Weighted Recall: 0.806
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Sachinkelenjaguri/Sachinkelenjaguri/climate_sentiment_classifier
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("Sachinkelenjaguri/climate_sentiment_classifier", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("Sachinkelenjaguri/climate_sentiment_classifier", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
``` |