--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Sachinkelenjaguri/autotrain-data-sachin-test-summarizer co2_eq_emissions: emissions: 0.001210370183555198 --- # Class: 0- Risk
1-Neutral
2-Oppertunity
# Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 55107128708 - CO2 Emissions (in grams): 0.0012 ## Validation Metrics - Loss: 0.516 - Accuracy: 0.806 - Macro F1: 0.783 - Micro F1: 0.806 - Weighted F1: 0.806 - Macro Precision: 0.777 - Micro Precision: 0.806 - Weighted Precision: 0.809 - Macro Recall: 0.793 - Micro Recall: 0.806 - Weighted Recall: 0.806 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Sachinkelenjaguri/Sachinkelenjaguri/climate_sentiment_classifier ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Sachinkelenjaguri/climate_sentiment_classifier", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Sachinkelenjaguri/climate_sentiment_classifier", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```