Edit model card

Whisper Small Yodas

This model is a fine-tuned version of openai/whisper-small on the Yodas dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1748
  • Wer Ortho: 0.2143
  • Wer: 0.1191

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.7316 0.24 500 0.2554 0.2942 0.2184
0.6996 0.49 1000 0.2136 0.2535 0.1563
0.6073 0.73 1500 0.1979 0.2374 0.1452
0.6032 0.98 2000 0.1872 0.2228 0.1280
0.4603 1.22 2500 0.1811 0.2136 0.1218
0.4142 1.46 3000 0.1767 0.2152 0.1200
0.4457 1.71 3500 0.1759 0.2159 0.1234
0.4376 1.95 4000 0.1748 0.2143 0.1191

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.0.1+cu117
  • Datasets 2.18.0
  • Tokenizers 0.15.1
Downloads last month
13
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Sagicc/whisper-small-sr-yodas

Finetuned
(1977)
this model

Dataset used to train Sagicc/whisper-small-sr-yodas

Evaluation results