File size: 8,915 Bytes
92b6d07
 
 
 
 
 
 
 
 
 
3d62ff8
 
92b6d07
3d62ff8
 
eac3427
92b6d07
 
 
 
 
 
 
 
 
 
 
 
 
79eb3e7
92b6d07
 
 
 
 
 
 
3d62ff8
92b6d07
 
 
79eb3e7
92b6d07
 
0e92823
92b6d07
 
 
3d62ff8
92b6d07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67c4199
 
 
 
 
 
 
92b6d07
 
 
 
 
 
 
 
 
 
 
 
 
3d62ff8
 
 
92b6d07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
---
license: cc-by-nc-4.0
language:
- en
pipeline_tag: image-text-to-text
---


# Model description

`XGen-MM` is a series of foundational Large Multimodal Models (LMMs) developed by Salesforce AI Research. This series advances upon the successful designs of the `BLIP` series, incorporating fundamental enhancements that ensure a more robust and superior foundation. \
These models have been trained at scale on high-quality image caption datasets and interleaved image-text data. XGen-MM highlights a few features below,

* The **pretrained** foundation model, `xgen-mm-phi3-mini-base-r-v1`, achieves state-of-the-art performance under 5b parameters and demonstrates strong in-context learning capabilities.
* The **instruct** fine-tuned model, `xgen-mm-phi3-mini-instruct-r-v1`, achieves state-of-the-art performance among open-source and closed-source VLMs under 5b parameters. 
* `xgen-mm-phi3-mini-instruct-r-v1` supports flexible high-resolution image encoding with efficient visual token sampling.  

More technical details will come with a technical report soon.


# Datasets

| Dataset Type| Dataset(s) Used                          |
|--------|------------------------------------------|
| Pretrain | caption data: (datacomp, cc12m, cc3m, SBU, vg) && interleaved data: obelics |
| Instruction Tuning    | LLaVA-Instruct-150K, ShareGPT4V captions, a mixture of academic VQA data including OCR/Document/Chart-focused tasks, publicly available text-only instruction data |

# Results

### Pretrain (base model without instruction tuning)
| Model       | Shot | COCO (val) | NoCaps (val) | TextCaps (val) | OKVQA  (val) | TextVQA (val) | VizWiz (testdev) | VQAv2 (testdev) |
|-------------|------|------------|--------------|----------------|--------------|---------------|------------------|-----------------|
| Flamingo-3B |    4 |       85.0 | -            | -              |         43.3 |          32.7 |               34 |            53.2 |
|             |    8 |       90.6 | -            | -              |         44.6 |          32.4 |             38.4 |            55.4 |
| MM1-3B      |    0 |       73.5 |         55.6 |           63.3 |         26.1 |          29.4 |             15.6 |            46.2 |
|             |    4 |      112.3 |         99.7 |           84.1 |         48.6 |          45.3 |             38.0 |            57.9 |
|             |    8 |      114.6 |        104.7 |           88.8 |         48.4 |          44.6 |             46.4 |            63.6 |
| **xgen-mm-phi3-mini-base-r-v1 (Ours)**|    0 |       **81.7** |         **80.2** |           60.7 |         **26.5** |          **36.0** |             **21.2** |            **48.1** |
|             |    4 |      110.5 |        **101.7** |           **84.6** |         **49.2** |          **46.1** |             **38.4** |            **63.9** |
|             |    8 |      112.1 |        104.4 |           87.7 |         **49.1** |          **46.4** |             44.3 |            **63.8** |

### Instruct (after instruction tuning)
| Model                      | SEED-IMG | MMBench(dev) | MME-total | MME-P    | MME-C   | MMStar   | MMMU (val) | MMVet    | MathVista (mini) | ScienceQA (test) | POPE      | AI2D     |   |
|----------------------------|----------|--------------|-----------|----------|---------|----------|------------|----------|------------------|------------------|----------|----------|---|
| MM1-3B-Chat                | 68.8     | **75.9**         | 1761      | **1482**     | 279     | -        | 33.9       | 43.7     | -                | -                | **87.4**            | -        |   |
| openbmb/MiniCPM-V-2        | 67.1     | 69.6         | 1808      | -        | -       | -        | 38.2       | -        | 38.7             | -                | -         | -        |   |
| VILA1.5-3B                 | 67.9     | 63.4         | -         | 1442     | -       | -        | 33.3       | 35.4     | -                | 69.0             | 85.9       | -        |   |
| xtuner/llava-phi-3-mini-hf | 70.0     | 69.2         | 1790      | 1477     | 313     | 43.7     | **41.4**       | -        | -                | 73.7             | 87.3       | 69.3     |   |
| **xgen-mm-phi3-mini-instruct-r-v1 (Ours)** | **72.1**     | 74.1         | **1827**      | 1467     | **360**     | **44.6**     | 39.8       | **45.1**     | **39.3**             | **74.2**             | 87.2       | **75.8**     |   |


# How to use

> We require the use of the development version (`"4.41.0.dev0"`) of the `transformers` library. To get it, as of 05/07/2024, one can use `pip uninstall -y transformers && pip install git+https://github.com/huggingface/transformers.`

```python
from transformers import AutoModelForVision2Seq, AutoTokenizer, AutoImageProcessor, StoppingCriteria
import torch
import requests
from PIL import Image

# define the prompt template
def apply_prompt_template(prompt):
    s = (
            '<|system|>\nA chat between a curious user and an artificial intelligence assistant. '
            "The assistant gives helpful, detailed, and polite answers to the user's questions.<|end|>\n"
            f'<|user|>\n<image>\n{prompt}<|end|>\n<|assistant|>\n'
        )
    return s 
class EosListStoppingCriteria(StoppingCriteria):
    def __init__(self, eos_sequence = [32007]):
        self.eos_sequence = eos_sequence

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        last_ids = input_ids[:,-len(self.eos_sequence):].tolist()
        return self.eos_sequence in last_ids      

# load models
model_name_or_path = "Salesforce/blip3-phi3-mini-instruct-r-v1"
model = AutoModelForVision2Seq.from_pretrained(model_name_or_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, use_fast=False, legacy=False)
image_processor = AutoImageProcessor.from_pretrained(model_name_or_path, trust_remote_code=True)
tokenizer = model.update_special_tokens(tokenizer)

# craft a test sample
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
query = "how many dogs are in the picture?"

model = model.cuda()
inputs = image_processor([raw_image], return_tensors="pt", image_aspect_ratio='anyres')
prompt = apply_prompt_template(query)
language_inputs = tokenizer([prompt], return_tensors="pt")
inputs.update(language_inputs)
inputs = {name: tensor.cuda() for name, tensor in inputs.items()}
generated_text = model.generate(**inputs, image_size=[raw_image.size],
                                pad_token_id=tokenizer.pad_token_id,
                                do_sample=False, max_new_tokens=768, top_p=None, num_beams=1,
                                stopping_criteria = [EosListStoppingCriteria()],
                                )
prediction = tokenizer.decode(generated_text[0], skip_special_tokens=True).split("<|end|>")[0]
print("==> prediction: ", prediction)
# output: ==> prediction: There is one dog in the picture.
```

More comprehensive examples can be found in the [notebook](demo.ipynb).

# Reproducibility: 

Our SFT evaluation is based on the VLMEvalKit, in which we fixed some inconsistencies with the official benchmarks (e.g., LLM judge API). During our development, we noticed that the raw resolution of the input image would noticeably affect the model output in some cases.


# Bias, Risks, Limitations, and Ethical Considerations
The main data sources are from the internet, including webpages, 
image stock sites, and curated datasets released by the research community. We have excluded certain data, such as LAION, due to known CSAM concerns.
The model may be subject to bias from the original data source, as well as bias from LLMs and commercial APIs. 
We strongly recommend users assess safety and fairness before applying to downstream applications. 


# License

Our code and weights are released under the Creative Commons Attribution Non Commercial 4.0 [LICENSE](LICENSE.txt). Please fill out a form at [here](https://forms.gle/ffPc9oZC2ZGeJ1N68) to consult the commercial use of model weights.

# Code acknowledgement

[LAVIS](https://github.com/salesforce/LAVIS) \
[openflamingo](https://github.com/mlfoundations/open_flamingo) \
[VLMEvalKit](https://github.com/open-compass/VLMEvalKit/tree/main)


# Citation
```
@misc{xgen_mm_phi3_mini,
    title={xgen-mm-phi3-mini-instruct Model Card},
    url={https://huggingface.co/Salesforce/xgen-mm-phi3-mini-instruct-r-v1},
    author={Salesforce AI Research},
    month={May},
    year={2024}
}
```

# Troubleshoot

1. If you missed any packages, please consider the following

```
pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu121
pip install open_clip_torch==2.24.0
pip install einops
pip install einops-exts
```