import numpy as np import tensorflow as tf import time import cv2 from core.yolov4 import YOLOv4, YOLOv3_tiny, YOLOv3, decode from absl import app, flags, logging from absl.flags import FLAGS from tensorflow.python.saved_model import tag_constants from core import utils from core.config import cfg from tensorflow.compat.v1 import ConfigProto from tensorflow.compat.v1 import InteractiveSession flags.DEFINE_boolean('tiny', False, 'yolo or yolo-tiny') flags.DEFINE_string('framework', 'tf', '(tf, tflite, trt') flags.DEFINE_string('model', 'yolov4', 'yolov3 or yolov4') flags.DEFINE_string('weights', './data/yolov4.weights', 'path to weights file') flags.DEFINE_string('image', './data/kite.jpg', 'path to input image') flags.DEFINE_integer('size', 416, 'resize images to') def main(_argv): if FLAGS.tiny: STRIDES = np.array(cfg.YOLO.STRIDES_TINY) ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny) else: STRIDES = np.array(cfg.YOLO.STRIDES) if FLAGS.model == 'yolov4': ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny) else: ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny) NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) XYSCALE = cfg.YOLO.XYSCALE config = ConfigProto() config.gpu_options.allow_growth = True session = InteractiveSession(config=config) input_size = FLAGS.size physical_devices = tf.config.experimental.list_physical_devices('GPU') if len(physical_devices) > 0: tf.config.experimental.set_memory_growth(physical_devices[0], True) if FLAGS.framework == 'tf': input_layer = tf.keras.layers.Input([input_size, input_size, 3]) if FLAGS.tiny: feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights(model, FLAGS.weights) elif FLAGS.framework == 'trt': saved_model_loaded = tf.saved_model.load(FLAGS.weights, tags=[tag_constants.SERVING]) signature_keys = list(saved_model_loaded.signatures.keys()) print(signature_keys) infer = saved_model_loaded.signatures['serving_default'] logging.info('weights loaded') @tf.function def run_model(x): return model(x) # Test the TensorFlow Lite model on random input data. sum = 0 original_image = cv2.imread(FLAGS.image) original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) original_image_size = original_image.shape[:2] image_data = utils.image_preprocess(np.copy(original_image), [FLAGS.size, FLAGS.size]) image_data = image_data[np.newaxis, ...].astype(np.float32) img_raw = tf.image.decode_image( open(FLAGS.image, 'rb').read(), channels=3) img_raw = tf.expand_dims(img_raw, 0) img_raw = tf.image.resize(img_raw, (FLAGS.size, FLAGS.size)) batched_input = tf.constant(image_data) for i in range(1000): prev_time = time.time() # pred_bbox = model.predict(image_data) if FLAGS.framework == 'tf': pred_bbox = [] result = run_model(image_data) for value in result: value = value.numpy() pred_bbox.append(value) if FLAGS.model == 'yolov4': pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE) else: pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES) bboxes = utils.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.25) bboxes = utils.nms(bboxes, 0.213, method='nms') elif FLAGS.framework == 'trt': pred_bbox = [] result = infer(batched_input) for key, value in result.items(): value = value.numpy() pred_bbox.append(value) if FLAGS.model == 'yolov4': pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE) else: pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES) bboxes = utils.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.25) bboxes = utils.nms(bboxes, 0.213, method='nms') # pred_bbox = pred_bbox.numpy() curr_time = time.time() exec_time = curr_time - prev_time if i == 0: continue sum += (1 / exec_time) info = str(i) + " time:" + str(round(exec_time, 3)) + " average FPS:" + str(round(sum / i, 2)) + ", FPS: " + str( round((1 / exec_time), 1)) print(info) if __name__ == '__main__': try: app.run(main) except SystemExit: pass