import time import tensorflow as tf physical_devices = tf.config.experimental.list_physical_devices('GPU') if len(physical_devices) > 0: tf.config.experimental.set_memory_growth(physical_devices[0], True) from absl import app, flags, logging from absl.flags import FLAGS import core.utils as utils from core.yolov4 import filter_boxes from tensorflow.python.saved_model import tag_constants from PIL import Image import cv2 import numpy as np from tensorflow.compat.v1 import ConfigProto from tensorflow.compat.v1 import InteractiveSession flags.DEFINE_string('framework', 'tf', '(tf, tflite, trt') flags.DEFINE_string('weights', './checkpoints/yolov4-416', 'path to weights file') flags.DEFINE_integer('size', 416, 'resize images to') flags.DEFINE_boolean('tiny', False, 'yolo or yolo-tiny') flags.DEFINE_string('model', 'yolov4', 'yolov3 or yolov4') flags.DEFINE_string('video', './data/road.mp4', 'path to input video') flags.DEFINE_float('iou', 0.45, 'iou threshold') flags.DEFINE_float('score', 0.25, 'score threshold') flags.DEFINE_string('output', None, 'path to output video') flags.DEFINE_string('output_format', 'XVID', 'codec used in VideoWriter when saving video to file') flags.DEFINE_boolean('dis_cv2_window', False, 'disable cv2 window during the process') # this is good for the .ipynb def main(_argv): config = ConfigProto() config.gpu_options.allow_growth = True session = InteractiveSession(config=config) STRIDES, ANCHORS, NUM_CLASS, XYSCALE = utils.load_config(FLAGS) input_size = FLAGS.size video_path = FLAGS.video print("Video from: ", video_path ) vid = cv2.VideoCapture(video_path) if FLAGS.framework == 'tflite': interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() print(input_details) print(output_details) else: saved_model_loaded = tf.saved_model.load(FLAGS.weights, tags=[tag_constants.SERVING]) infer = saved_model_loaded.signatures['serving_default'] if FLAGS.output: # by default VideoCapture returns float instead of int width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = int(vid.get(cv2.CAP_PROP_FPS)) codec = cv2.VideoWriter_fourcc(*FLAGS.output_format) out = cv2.VideoWriter(FLAGS.output, codec, fps, (width, height)) frame_id = 0 while True: return_value, frame = vid.read() if return_value: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) image = Image.fromarray(frame) else: if frame_id == vid.get(cv2.CAP_PROP_FRAME_COUNT): print("Video processing complete") break raise ValueError("No image! Try with another video format") frame_size = frame.shape[:2] image_data = cv2.resize(frame, (input_size, input_size)) image_data = image_data / 255. image_data = image_data[np.newaxis, ...].astype(np.float32) prev_time = time.time() if FLAGS.framework == 'tflite': interpreter.set_tensor(input_details[0]['index'], image_data) interpreter.invoke() pred = [interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details))] if FLAGS.model == 'yolov3' and FLAGS.tiny == True: boxes, pred_conf = filter_boxes(pred[1], pred[0], score_threshold=0.25, input_shape=tf.constant([input_size, input_size])) else: boxes, pred_conf = filter_boxes(pred[0], pred[1], score_threshold=0.25, input_shape=tf.constant([input_size, input_size])) else: batch_data = tf.constant(image_data) pred_bbox = infer(batch_data) for key, value in pred_bbox.items(): boxes = value[:, :, 0:4] pred_conf = value[:, :, 4:] boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression( boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)), scores=tf.reshape( pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])), max_output_size_per_class=50, max_total_size=50, iou_threshold=FLAGS.iou, score_threshold=FLAGS.score ) pred_bbox = [boxes.numpy(), scores.numpy(), classes.numpy(), valid_detections.numpy()] image = utils.draw_bbox(frame, pred_bbox) curr_time = time.time() exec_time = curr_time - prev_time result = np.asarray(image) info = "time: %.2f ms" %(1000*exec_time) print(info) result = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) if not FLAGS.dis_cv2_window: cv2.namedWindow("result", cv2.WINDOW_AUTOSIZE) cv2.imshow("result", result) if cv2.waitKey(1) & 0xFF == ord('q'): break if FLAGS.output: out.write(result) frame_id += 1 if __name__ == '__main__': try: app.run(main) except SystemExit: pass