Upload model: PPO-LunarLander-v2, version: 1.000000
Browse files- .gitattributes +1 -0
- PPO-LunarLander-v2.zip +3 -0
- PPO-LunarLander-v2/_stable_baselines3_version +1 -0
- PPO-LunarLander-v2/data +94 -0
- PPO-LunarLander-v2/policy.optimizer.pth +3 -0
- PPO-LunarLander-v2/policy.pth +3 -0
- PPO-LunarLander-v2/pytorch_variables.pth +3 -0
- PPO-LunarLander-v2/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
PPO-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e030b292d90a79b3b336d71537bad31737747524edbf19834db42b263377b24f
|
3 |
+
size 144046
|
PPO-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
PPO-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcf5c4725f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcf5c472680>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcf5c472710>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcf5c4727a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fcf5c472830>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fcf5c4728c0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcf5c472950>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fcf5c4729e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcf5c472a70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcf5c472b00>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcf5c472b90>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fcf5c4be720>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651684632.5813735,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMzNT17Tp26t62CusLAMbaa75G6xtGWOQAAgD8AAIA/Gk4wPeEihrriOpc6MzCcNNbVNbuusa25AACAPwAAgD+uNMC+jKKFPm33fD6pm2O+kxgXPdgIFD0AAAAAAAAAALMrFr2PXle6cMhguWaW2rFoTki6p1mCOAAAgD8AAIA/MytaPBLWrj98FYU+7YvZvmqeDLtupQc9AAAAAAAAAABmeZ09cZ1XuTiGo7sJiKg2beHRu1PbHLYAAIA/AAAAAAAtDb32ZCa6kguEO0aHiDiunpC6RgchugAAgD8AAIA/zT2MvNHhiT9Bgp49co6NvojwXTy6xkU9AAAAAAAAAADNo2m9qIiCPnqRJz1aqjK+qEOBPUaenTwAAAAAAAAAALOsa732DHW6raPxuQtw2bSo3ME6N0oNOQAAgD8AAIA/ZuAyvFzvHLrPe0Y4HMMuM362CrtVimy3AACAPwAAgD8NrAO+TpGbPYs9dj0TpHi+6c17PAsxEzwAAAAAAAAAAGbm3blI4Y26hTHdtc2Iw7BIxCy7c47+NAAAgD8AAIA/IOdrPqsRjj4vBZA7fXSkvvyhJz3bJNE8AAAAAAAAAAAmwYG9rp2RugXCaLgtr3Sz4jLcOpF+hjcAAIA/AACAP2bQBL4FAo48HvS1vAmTLb4H3Ai927KhvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQiRDjq1ZY0CUhpRSlIwBbJRN6AOMAXSUR0CRRZc6/7BPdX2UKGgGaAloD0MIeCY0SSy1ZECUhpRSlGgVTegDaBZHQJFGd+TeO4p1fZQoaAZoCWgPQwh07+GSY3NhQJSGlFKUaBVN6ANoFkdAkUgEh7mdRXV9lChoBmgJaA9DCAPOUrKc/GNAlIaUUpRoFU3oA2gWR0CRSfXQ+lj3dX2UKGgGaAloD0MI8DDtm/ukW0CUhpRSlGgVTegDaBZHQJFX4eA/cFh1fZQoaAZoCWgPQwhLrmLxG4VgQJSGlFKUaBVN6ANoFkdAkV/9wBHTZ3V9lChoBmgJaA9DCLZHb7iPxGFAlIaUUpRoFU3oA2gWR0CRayHDaXa8dX2UKGgGaAloD0MI4nSSrS61W0CUhpRSlGgVTegDaBZHQJFtb5ylvZR1fZQoaAZoCWgPQwhanDHMiZ5iQJSGlFKUaBVN6ANoFkdAkXLuZof0VnV9lChoBmgJaA9DCFa6u86Ggl5AlIaUUpRoFU3oA2gWR0CRlFoDgZTAdX2UKGgGaAloD0MIJEc6A6O1YkCUhpRSlGgVTegDaBZHQJGZaso2GZh1fZQoaAZoCWgPQwigFRiyOk9oQJSGlFKUaBVN6ANoFkdAkZql3+uNgnV9lChoBmgJaA9DCKKakqzDRXBAlIaUUpRoFU1DA2gWR0CRmrWYWtU5dX2UKGgGaAloD0MI/id/9w4ZYECUhpRSlGgVTegDaBZHQJGcHlijL0V1fZQoaAZoCWgPQwgz+WabG2ZkQJSGlFKUaBVN6ANoFkdAkaGIIrvsq3V9lChoBmgJaA9DCAngZvHiTWNAlIaUUpRoFU3oA2gWR0CRo71k1/DtdX2UKGgGaAloD0MIrdo1IS0PakCUhpRSlGgVTZADaBZHQJGl/xMFlkJ1fZQoaAZoCWgPQwhLzR5ohXJiQJSGlFKUaBVN6ANoFkdAkaaBeLNwBHV9lChoBmgJaA9DCIOnkCv1QmNAlIaUUpRoFU3oA2gWR0CRp1jOcDr7dX2UKGgGaAloD0MI+0DyzqExZ0CUhpRSlGgVTegDaBZHQJGo4jAzpHJ1fZQoaAZoCWgPQwjrq6sCtStlQJSGlFKUaBVN6ANoFkdAkbVnPJJXhnV9lChoBmgJaA9DCH42ct0UzmJAlIaUUpRoFU3oA2gWR0CRvHIWxhUjdX2UKGgGaAloD0MI0Jfe/lyzZECUhpRSlGgVTegDaBZHQJHHWRU3n6l1fZQoaAZoCWgPQwhYqDXNu9dgQJSGlFKUaBVN6ANoFkdAkcmkTpPhynV9lChoBmgJaA9DCDSeCOK8dGFAlIaUUpRoFU3oA2gWR0CRzo/ACW/rdX2UKGgGaAloD0MIyLJg4o9rYkCUhpRSlGgVTegDaBZHQJHto0Mw1zh1fZQoaAZoCWgPQwgx0LUvIJZjQJSGlFKUaBVN6ANoFkdAkfKdnK4hEHV9lChoBmgJaA9DCLEUyVcCaWNAlIaUUpRoFU3oA2gWR0CR89mpEQXidX2UKGgGaAloD0MIbt44KUzXYUCUhpRSlGgVTegDaBZHQJHz52Qnx8V1fZQoaAZoCWgPQwj5ghYSMJhiQJSGlFKUaBVN6ANoFkdAkfVQ2MsH0XV9lChoBmgJaA9DCEXxKmubxmJAlIaUUpRoFU3oA2gWR0CR+jSrYGt7dX2UKGgGaAloD0MI6DBfXgAEZECUhpRSlGgVTegDaBZHQJH8CX9itq51fZQoaAZoCWgPQwjzPLg7a3ZkQJSGlFKUaBVN6ANoFkdAkf4ATh5xBHV9lChoBmgJaA9DCJZ31QPmWmFAlIaUUpRoFU3oA2gWR0CR/nebNKRMdX2UKGgGaAloD0MIt0JYjaWWYkCUhpRSlGgVTegDaBZHQJH/MaOxSpB1fZQoaAZoCWgPQwhS7dPxWFZwQJSGlFKUaBVNLQJoFkdAkgAy4J/oaHV9lChoBmgJaA9DCAcj9gkg8mBAlIaUUpRoFU3oA2gWR0CSAFnOSntOdX2UKGgGaAloD0MIQN6rVqYeb0CUhpRSlGgVTWgDaBZHQJIIwbLlmvp1fZQoaAZoCWgPQwiwG7Ytyr9hQJSGlFKUaBVN6ANoFkdAkgqn8TBZZHV9lChoBmgJaA9DCF4UPfAxOBbAlIaUUpRoFU0jAWgWR0CSDF/oaDPGdX2UKGgGaAloD0MIVkeOdAYfZkCUhpRSlGgVTegDaBZHQJIb4rOJLuh1fZQoaAZoCWgPQwg2yY/4FdNFQJSGlFKUaBVNLQFoFkdAkhxXAdn003V9lChoBmgJaA9DCDcz+tFwcWNAlIaUUpRoFU3oA2gWR0CSIJ3BYV7AdX2UKGgGaAloD0MIJuXuc/zfYECUhpRSlGgVTegDaBZHQJI9XXiBGx51fZQoaAZoCWgPQwjxYmGIHMNjQJSGlFKUaBVN6ANoFkdAkkEpudf9gnV9lChoBmgJaA9DCJoiwOndbWNAlIaUUpRoFU3oA2gWR0CSQh6zVtoBdX2UKGgGaAloD0MIIVor2hziZECUhpRSlGgVTegDaBZHQJJCLEm6XjV1fZQoaAZoCWgPQwjH1jOEY3ZjQJSGlFKUaBVN6ANoFkdAkkNBouf29XV9lChoBmgJaA9DCPOS/8lftmBAlIaUUpRoFU3oA2gWR0CSRyy9VWCFdX2UKGgGaAloD0MIX3tmSYAFckCUhpRSlGgVTboDaBZHQJJIvDfm9xp1fZQoaAZoCWgPQwgysI7jB5NgQJSGlFKUaBVN6ANoFkdAkkjLupjtonV9lChoBmgJaA9DCDeo/dbOMWRAlIaUUpRoFU3oA2gWR0CSS774SHuadX2UKGgGaAloD0MI12fO+hShYUCUhpRSlGgVTegDaBZHQJJM8tSQ5m11fZQoaAZoCWgPQwgtW+uLhExjQJSGlFKUaBVN6ANoFkdAkk0loYekpXV9lChoBmgJaA9DCAM/qmE/xGJAlIaUUpRoFU3oA2gWR0CSWMdB0ITodX2UKGgGaAloD0MIL4mzIuoWYkCUhpRSlGgVTegDaBZHQJJaocsDnvF1fZQoaAZoCWgPQwiv7e2W5IRlQJSGlFKUaBVN6ANoFkdAkmoT5Kvmo3V9lChoBmgJaA9DCHA+dazSfmFAlIaUUpRoFU3oA2gWR0CSapEpiI+GdX2UKGgGaAloD0MIBRps6jx2N0CUhpRSlGgVTTUBaBZHQJJtV6yB06p1fZQoaAZoCWgPQwj99+C1y71gQJSGlFKUaBVN6ANoFkdAkm7SGzru6XV9lChoBmgJaA9DCOHs1jKZtmJAlIaUUpRoFU3oA2gWR0CSjMRmbsnidX2UKGgGaAloD0MILc+DuzPwYUCUhpRSlGgVTegDaBZHQJKQ32ZiNKh1fZQoaAZoCWgPQwjWVBaF3dJkQJSGlFKUaBVN6ANoFkdAkpIIrvsqrnV9lChoBmgJaA9DCCHM7V7u8mVAlIaUUpRoFU3oA2gWR0CSkhbcoH9ndX2UKGgGaAloD0MIpfeNrz2oXECUhpRSlGgVTegDaBZHQJKTVBUrCnB1fZQoaAZoCWgPQwjbheY6jURgQJSGlFKUaBVN6ANoFkdAkpe2c8TzunV9lChoBmgJaA9DCIqw4emVpl1AlIaUUpRoFU3oA2gWR0CSmYGmUGFBdX2UKGgGaAloD0MI++jUlc/6YUCUhpRSlGgVTegDaBZHQJKZkSAYpDx1fZQoaAZoCWgPQwgQI4RHm55mQJSGlFKUaBVN6ANoFkdAkpzwiFCb+nV9lChoBmgJaA9DCOONzCP/kmZAlIaUUpRoFU3oA2gWR0CSnkAsTWXkdX2UKGgGaAloD0MIwf7r3DRSZUCUhpRSlGgVTegDaBZHQJKegLronrp1fZQoaAZoCWgPQwhHrptSXnsxQJSGlFKUaBVNCgFoFkdAkqD5/kNnXnV9lChoBmgJaA9DCLbz/dR4V0xAlIaUUpRoFU0TAWgWR0CSp4ji4rjHdX2UKGgGaAloD0MIED//PfjdYkCUhpRSlGgVTegDaBZHQJKtA4dZJTV1fZQoaAZoCWgPQwiHbvYHyjRSQJSGlFKUaBVL72gWR0CSrRk3juKGdX2UKGgGaAloD0MILGUZ4lg3RkCUhpRSlGgVS+FoFkdAkq8tkjHGTHV9lChoBmgJaA9DCNc07zjFnWVAlIaUUpRoFU3oA2gWR0CSvRr5ZbIMdX2UKGgGaAloD0MIu/HuyFhZX0CUhpRSlGgVTegDaBZHQJK9oNoakyl1fZQoaAZoCWgPQwgvhQfNrjsnwJSGlFKUaBVNCgFoFkdAkr+m6shgV3V9lChoBmgJaA9DCO3xQjo8iWJAlIaUUpRoFU3oA2gWR0CSwG2rGR3edX2UKGgGaAloD0MIO/922a+qYUCUhpRSlGgVTegDaBZHQJLBvyVfNRp1fZQoaAZoCWgPQwghBORLKOxxQJSGlFKUaBVNVQNoFkdAksdlbVz6rXV9lChoBmgJaA9DCIqvdhTn+mFAlIaUUpRoFU3oA2gWR0CS3ceJpFkQdX2UKGgGaAloD0MIHLRXHw/1YUCUhpRSlGgVTegDaBZHQJLhvVrhzeZ1fZQoaAZoCWgPQwjDEaRSbCxlQJSGlFKUaBVN6ANoFkdAkuQpxrBTGnV9lChoBmgJaA9DCNi4/l2f/GJAlIaUUpRoFU3oA2gWR0CS6zMXJo0zdX2UKGgGaAloD0MIECIZcmxPYUCUhpRSlGgVTegDaBZHQJLrRUtI0651fZQoaAZoCWgPQwiu78NBwg9mQJSGlFKUaBVN6ANoFkdAku8HgpBomHV9lChoBmgJaA9DCFzGTQ00kmBAlIaUUpRoFU3oA2gWR0CS8G11nuiOdX2UKGgGaAloD0MIC9KMRVMQZkCUhpRSlGgVTegDaBZHQJL6tZmqYJF1fZQoaAZoCWgPQwizzvi+uCw2QJSGlFKUaBVL/GgWR0CS/3q9GqgidX2UKGgGaAloD0MI9fHQd7dLYECUhpRSlGgVTegDaBZHQJMAZ/+bVjJ1fZQoaAZoCWgPQwh3FVJ+UhliQJSGlFKUaBVN6ANoFkdAkwJsQ2/BWXV9lChoBmgJaA9DCJn1YiinQWRAlIaUUpRoFU3oA2gWR0CTD5JlrdnCdX2UKGgGaAloD0MIZvUOt0POX0CUhpRSlGgVTegDaBZHQJMQEdvKlpJ1fZQoaAZoCWgPQwipM/eQ8DdhQJSGlFKUaBVN6ANoFkdAkxHECJXQt3V9lChoBmgJaA9DCJkPCHSm/2VAlIaUUpRoFU3oA2gWR0CTEm6HTI/8dX2UKGgGaAloD0MIRidLrXcnYUCUhpRSlGgVTegDaBZHQJMTk6xPfsN1fZQoaAZoCWgPQwiNmUS9YINlQJSGlFKUaBVN6ANoFkdAkxihNqQA/HV9lChoBmgJaA9DCNOiPsmdXGNAlIaUUpRoFU3oA2gWR0CTHF6FM7EHdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
PPO-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e13e751cd8dace1a60afed500cba354e18f6238d1356e2bba61989109fc5a72d
|
3 |
+
size 84829
|
PPO-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9b0e1424b8fd0a4d5820db9b07987167e0bc02f546f881add1c0f358b4aa6a6
|
3 |
+
size 43201
|
PPO-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 240.17 +/- 41.96
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcf5c4725f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcf5c472680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcf5c472710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcf5c4727a0>", "_build": "<function ActorCriticPolicy._build at 0x7fcf5c472830>", "forward": "<function ActorCriticPolicy.forward at 0x7fcf5c4728c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcf5c472950>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcf5c4729e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcf5c472a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcf5c472b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcf5c472b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcf5c4be720>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651684632.5813735, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMzNT17Tp26t62CusLAMbaa75G6xtGWOQAAgD8AAIA/Gk4wPeEihrriOpc6MzCcNNbVNbuusa25AACAPwAAgD+uNMC+jKKFPm33fD6pm2O+kxgXPdgIFD0AAAAAAAAAALMrFr2PXle6cMhguWaW2rFoTki6p1mCOAAAgD8AAIA/MytaPBLWrj98FYU+7YvZvmqeDLtupQc9AAAAAAAAAABmeZ09cZ1XuTiGo7sJiKg2beHRu1PbHLYAAIA/AAAAAAAtDb32ZCa6kguEO0aHiDiunpC6RgchugAAgD8AAIA/zT2MvNHhiT9Bgp49co6NvojwXTy6xkU9AAAAAAAAAADNo2m9qIiCPnqRJz1aqjK+qEOBPUaenTwAAAAAAAAAALOsa732DHW6raPxuQtw2bSo3ME6N0oNOQAAgD8AAIA/ZuAyvFzvHLrPe0Y4HMMuM362CrtVimy3AACAPwAAgD8NrAO+TpGbPYs9dj0TpHi+6c17PAsxEzwAAAAAAAAAAGbm3blI4Y26hTHdtc2Iw7BIxCy7c47+NAAAgD8AAIA/IOdrPqsRjj4vBZA7fXSkvvyhJz3bJNE8AAAAAAAAAAAmwYG9rp2RugXCaLgtr3Sz4jLcOpF+hjcAAIA/AACAP2bQBL4FAo48HvS1vAmTLb4H3Ai927KhvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQiRDjq1ZY0CUhpRSlIwBbJRN6AOMAXSUR0CRRZc6/7BPdX2UKGgGaAloD0MIeCY0SSy1ZECUhpRSlGgVTegDaBZHQJFGd+TeO4p1fZQoaAZoCWgPQwh07+GSY3NhQJSGlFKUaBVN6ANoFkdAkUgEh7mdRXV9lChoBmgJaA9DCAPOUrKc/GNAlIaUUpRoFU3oA2gWR0CRSfXQ+lj3dX2UKGgGaAloD0MI8DDtm/ukW0CUhpRSlGgVTegDaBZHQJFX4eA/cFh1fZQoaAZoCWgPQwhLrmLxG4VgQJSGlFKUaBVN6ANoFkdAkV/9wBHTZ3V9lChoBmgJaA9DCLZHb7iPxGFAlIaUUpRoFU3oA2gWR0CRayHDaXa8dX2UKGgGaAloD0MI4nSSrS61W0CUhpRSlGgVTegDaBZHQJFtb5ylvZR1fZQoaAZoCWgPQwhanDHMiZ5iQJSGlFKUaBVN6ANoFkdAkXLuZof0VnV9lChoBmgJaA9DCFa6u86Ggl5AlIaUUpRoFU3oA2gWR0CRlFoDgZTAdX2UKGgGaAloD0MIJEc6A6O1YkCUhpRSlGgVTegDaBZHQJGZaso2GZh1fZQoaAZoCWgPQwigFRiyOk9oQJSGlFKUaBVN6ANoFkdAkZql3+uNgnV9lChoBmgJaA9DCKKakqzDRXBAlIaUUpRoFU1DA2gWR0CRmrWYWtU5dX2UKGgGaAloD0MI/id/9w4ZYECUhpRSlGgVTegDaBZHQJGcHlijL0V1fZQoaAZoCWgPQwgz+WabG2ZkQJSGlFKUaBVN6ANoFkdAkaGIIrvsq3V9lChoBmgJaA9DCAngZvHiTWNAlIaUUpRoFU3oA2gWR0CRo71k1/DtdX2UKGgGaAloD0MIrdo1IS0PakCUhpRSlGgVTZADaBZHQJGl/xMFlkJ1fZQoaAZoCWgPQwhLzR5ohXJiQJSGlFKUaBVN6ANoFkdAkaaBeLNwBHV9lChoBmgJaA9DCIOnkCv1QmNAlIaUUpRoFU3oA2gWR0CRp1jOcDr7dX2UKGgGaAloD0MI+0DyzqExZ0CUhpRSlGgVTegDaBZHQJGo4jAzpHJ1fZQoaAZoCWgPQwjrq6sCtStlQJSGlFKUaBVN6ANoFkdAkbVnPJJXhnV9lChoBmgJaA9DCH42ct0UzmJAlIaUUpRoFU3oA2gWR0CRvHIWxhUjdX2UKGgGaAloD0MI0Jfe/lyzZECUhpRSlGgVTegDaBZHQJHHWRU3n6l1fZQoaAZoCWgPQwhYqDXNu9dgQJSGlFKUaBVN6ANoFkdAkcmkTpPhynV9lChoBmgJaA9DCDSeCOK8dGFAlIaUUpRoFU3oA2gWR0CRzo/ACW/rdX2UKGgGaAloD0MIyLJg4o9rYkCUhpRSlGgVTegDaBZHQJHto0Mw1zh1fZQoaAZoCWgPQwgx0LUvIJZjQJSGlFKUaBVN6ANoFkdAkfKdnK4hEHV9lChoBmgJaA9DCLEUyVcCaWNAlIaUUpRoFU3oA2gWR0CR89mpEQXidX2UKGgGaAloD0MIbt44KUzXYUCUhpRSlGgVTegDaBZHQJHz52Qnx8V1fZQoaAZoCWgPQwj5ghYSMJhiQJSGlFKUaBVN6ANoFkdAkfVQ2MsH0XV9lChoBmgJaA9DCEXxKmubxmJAlIaUUpRoFU3oA2gWR0CR+jSrYGt7dX2UKGgGaAloD0MI6DBfXgAEZECUhpRSlGgVTegDaBZHQJH8CX9itq51fZQoaAZoCWgPQwjzPLg7a3ZkQJSGlFKUaBVN6ANoFkdAkf4ATh5xBHV9lChoBmgJaA9DCJZ31QPmWmFAlIaUUpRoFU3oA2gWR0CR/nebNKRMdX2UKGgGaAloD0MIt0JYjaWWYkCUhpRSlGgVTegDaBZHQJH/MaOxSpB1fZQoaAZoCWgPQwhS7dPxWFZwQJSGlFKUaBVNLQJoFkdAkgAy4J/oaHV9lChoBmgJaA9DCAcj9gkg8mBAlIaUUpRoFU3oA2gWR0CSAFnOSntOdX2UKGgGaAloD0MIQN6rVqYeb0CUhpRSlGgVTWgDaBZHQJIIwbLlmvp1fZQoaAZoCWgPQwiwG7Ytyr9hQJSGlFKUaBVN6ANoFkdAkgqn8TBZZHV9lChoBmgJaA9DCF4UPfAxOBbAlIaUUpRoFU0jAWgWR0CSDF/oaDPGdX2UKGgGaAloD0MIVkeOdAYfZkCUhpRSlGgVTegDaBZHQJIb4rOJLuh1fZQoaAZoCWgPQwg2yY/4FdNFQJSGlFKUaBVNLQFoFkdAkhxXAdn003V9lChoBmgJaA9DCDcz+tFwcWNAlIaUUpRoFU3oA2gWR0CSIJ3BYV7AdX2UKGgGaAloD0MIJuXuc/zfYECUhpRSlGgVTegDaBZHQJI9XXiBGx51fZQoaAZoCWgPQwjxYmGIHMNjQJSGlFKUaBVN6ANoFkdAkkEpudf9gnV9lChoBmgJaA9DCJoiwOndbWNAlIaUUpRoFU3oA2gWR0CSQh6zVtoBdX2UKGgGaAloD0MIIVor2hziZECUhpRSlGgVTegDaBZHQJJCLEm6XjV1fZQoaAZoCWgPQwjH1jOEY3ZjQJSGlFKUaBVN6ANoFkdAkkNBouf29XV9lChoBmgJaA9DCPOS/8lftmBAlIaUUpRoFU3oA2gWR0CSRyy9VWCFdX2UKGgGaAloD0MIX3tmSYAFckCUhpRSlGgVTboDaBZHQJJIvDfm9xp1fZQoaAZoCWgPQwgysI7jB5NgQJSGlFKUaBVN6ANoFkdAkkjLupjtonV9lChoBmgJaA9DCDeo/dbOMWRAlIaUUpRoFU3oA2gWR0CSS774SHuadX2UKGgGaAloD0MI12fO+hShYUCUhpRSlGgVTegDaBZHQJJM8tSQ5m11fZQoaAZoCWgPQwgtW+uLhExjQJSGlFKUaBVN6ANoFkdAkk0loYekpXV9lChoBmgJaA9DCAM/qmE/xGJAlIaUUpRoFU3oA2gWR0CSWMdB0ITodX2UKGgGaAloD0MIL4mzIuoWYkCUhpRSlGgVTegDaBZHQJJaocsDnvF1fZQoaAZoCWgPQwiv7e2W5IRlQJSGlFKUaBVN6ANoFkdAkmoT5Kvmo3V9lChoBmgJaA9DCHA+dazSfmFAlIaUUpRoFU3oA2gWR0CSapEpiI+GdX2UKGgGaAloD0MIBRps6jx2N0CUhpRSlGgVTTUBaBZHQJJtV6yB06p1fZQoaAZoCWgPQwj99+C1y71gQJSGlFKUaBVN6ANoFkdAkm7SGzru6XV9lChoBmgJaA9DCOHs1jKZtmJAlIaUUpRoFU3oA2gWR0CSjMRmbsnidX2UKGgGaAloD0MILc+DuzPwYUCUhpRSlGgVTegDaBZHQJKQ32ZiNKh1fZQoaAZoCWgPQwjWVBaF3dJkQJSGlFKUaBVN6ANoFkdAkpIIrvsqrnV9lChoBmgJaA9DCCHM7V7u8mVAlIaUUpRoFU3oA2gWR0CSkhbcoH9ndX2UKGgGaAloD0MIpfeNrz2oXECUhpRSlGgVTegDaBZHQJKTVBUrCnB1fZQoaAZoCWgPQwjbheY6jURgQJSGlFKUaBVN6ANoFkdAkpe2c8TzunV9lChoBmgJaA9DCIqw4emVpl1AlIaUUpRoFU3oA2gWR0CSmYGmUGFBdX2UKGgGaAloD0MI++jUlc/6YUCUhpRSlGgVTegDaBZHQJKZkSAYpDx1fZQoaAZoCWgPQwgQI4RHm55mQJSGlFKUaBVN6ANoFkdAkpzwiFCb+nV9lChoBmgJaA9DCOONzCP/kmZAlIaUUpRoFU3oA2gWR0CSnkAsTWXkdX2UKGgGaAloD0MIwf7r3DRSZUCUhpRSlGgVTegDaBZHQJKegLronrp1fZQoaAZoCWgPQwhHrptSXnsxQJSGlFKUaBVNCgFoFkdAkqD5/kNnXnV9lChoBmgJaA9DCLbz/dR4V0xAlIaUUpRoFU0TAWgWR0CSp4ji4rjHdX2UKGgGaAloD0MIED//PfjdYkCUhpRSlGgVTegDaBZHQJKtA4dZJTV1fZQoaAZoCWgPQwiHbvYHyjRSQJSGlFKUaBVL72gWR0CSrRk3juKGdX2UKGgGaAloD0MILGUZ4lg3RkCUhpRSlGgVS+FoFkdAkq8tkjHGTHV9lChoBmgJaA9DCNc07zjFnWVAlIaUUpRoFU3oA2gWR0CSvRr5ZbIMdX2UKGgGaAloD0MIu/HuyFhZX0CUhpRSlGgVTegDaBZHQJK9oNoakyl1fZQoaAZoCWgPQwgvhQfNrjsnwJSGlFKUaBVNCgFoFkdAkr+m6shgV3V9lChoBmgJaA9DCO3xQjo8iWJAlIaUUpRoFU3oA2gWR0CSwG2rGR3edX2UKGgGaAloD0MIO/922a+qYUCUhpRSlGgVTegDaBZHQJLBvyVfNRp1fZQoaAZoCWgPQwghBORLKOxxQJSGlFKUaBVNVQNoFkdAksdlbVz6rXV9lChoBmgJaA9DCIqvdhTn+mFAlIaUUpRoFU3oA2gWR0CS3ceJpFkQdX2UKGgGaAloD0MIHLRXHw/1YUCUhpRSlGgVTegDaBZHQJLhvVrhzeZ1fZQoaAZoCWgPQwjDEaRSbCxlQJSGlFKUaBVN6ANoFkdAkuQpxrBTGnV9lChoBmgJaA9DCNi4/l2f/GJAlIaUUpRoFU3oA2gWR0CS6zMXJo0zdX2UKGgGaAloD0MIECIZcmxPYUCUhpRSlGgVTegDaBZHQJLrRUtI0651fZQoaAZoCWgPQwiu78NBwg9mQJSGlFKUaBVN6ANoFkdAku8HgpBomHV9lChoBmgJaA9DCFzGTQ00kmBAlIaUUpRoFU3oA2gWR0CS8G11nuiOdX2UKGgGaAloD0MIC9KMRVMQZkCUhpRSlGgVTegDaBZHQJL6tZmqYJF1fZQoaAZoCWgPQwizzvi+uCw2QJSGlFKUaBVL/GgWR0CS/3q9GqgidX2UKGgGaAloD0MI9fHQd7dLYECUhpRSlGgVTegDaBZHQJMAZ/+bVjJ1fZQoaAZoCWgPQwh3FVJ+UhliQJSGlFKUaBVN6ANoFkdAkwJsQ2/BWXV9lChoBmgJaA9DCJn1YiinQWRAlIaUUpRoFU3oA2gWR0CTD5JlrdnCdX2UKGgGaAloD0MIZvUOt0POX0CUhpRSlGgVTegDaBZHQJMQEdvKlpJ1fZQoaAZoCWgPQwipM/eQ8DdhQJSGlFKUaBVN6ANoFkdAkxHECJXQt3V9lChoBmgJaA9DCJkPCHSm/2VAlIaUUpRoFU3oA2gWR0CTEm6HTI/8dX2UKGgGaAloD0MIRidLrXcnYUCUhpRSlGgVTegDaBZHQJMTk6xPfsN1fZQoaAZoCWgPQwiNmUS9YINlQJSGlFKUaBVN6ANoFkdAkxihNqQA/HV9lChoBmgJaA9DCNOiPsmdXGNAlIaUUpRoFU3oA2gWR0CTHF6FM7EHdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c579251bf55b2a319f548ecbd7d0d6a61203e9cb9449084fe2736f048335a72
|
3 |
+
size 205569
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 240.16933901444094, "std_reward": 41.96432289955388, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T17:46:05.937059"}
|