ScrappyCoco666 commited on
Commit
4fcb8d2
1 Parent(s): 9a25711

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -6.47 +/- 2.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c635f93ced4cff7dc9274514a3989b640c82247e10162e67d970b356af05aa0a
3
+ size 107987
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f744dacbe50>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f744daca510>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1500000,
45
+ "_total_timesteps": 1500000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1675437934681650031,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAvz+0PiOS5z2trgY/vz+0PiOS5z2trgY/vz+0PiOS5z2trgY/vz+0PiOS5z2trgY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkePAvx3CRL/NJ4Q/1rGGv/KIxD+Bzre+Jw46vj58fb9GFnY9StVNv2LzsT+n8Ea/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC/P7Q+I5LnPa2uBj+d15A7kTrnOyFGyzq/P7Q+I5LnPa2uBj+d15A7kTrnOyFGyzq/P7Q+I5LnPa2uBj+d15A7kTrnOyFGyzq/P7Q+I5LnPa2uBj+d15A7kTrnOyFGyzqUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.35204884 0.1130717 0.52610284]\n [0.35204884 0.1130717 0.52610284]\n [0.35204884 0.1130717 0.52610284]\n [0.35204884 0.1130717 0.52610284]]",
60
+ "desired_goal": "[[-1.5069448 -0.76858693 1.0324646 ]\n [-1.0523021 1.5354292 -0.35899737]\n [-0.18169461 -0.99017704 0.06007984]\n [-0.8040358 1.39024 -0.77710956]]",
61
+ "observation": "[[0.35204884 0.1130717 0.52610284 0.00442023 0.00705654 0.00155086]\n [0.35204884 0.1130717 0.52610284 0.00442023 0.00705654 0.00155086]\n [0.35204884 0.1130717 0.52610284 0.00442023 0.00705654 0.00155086]\n [0.35204884 0.1130717 0.52610284 0.00442023 0.00705654 0.00155086]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACbGUPFD75D0nToM+qfcSPvoP+73vIEY+lP68Oytbo7wHHzs+MaW8PVWE5L1EroU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.01815082 0.11180747 0.25645563]\n [ 0.14352287 -0.12258907 0.193485 ]\n [ 0.00576765 -0.01994093 0.18273555]\n [ 0.09211195 -0.11158053 0.26109517]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIL4mzImpCEsCUhpRSlIwBbJRLMowBdJRHQKvZY6lLvkR1fZQoaAZoCWgPQwhzLsVVZd8XwJSGlFKUaBVLMmgWR0Cr2R25Yoy9dX2UKGgGaAloD0MIui2RC85wG8CUhpRSlGgVSzJoFkdAq9ja6asp5XV9lChoBmgJaA9DCKZEEr2MQg7AlIaUUpRoFUsyaBZHQKvYmIBzV+Z1fZQoaAZoCWgPQwj1Zz9SRPYYwJSGlFKUaBVLMmgWR0Cr2kth3JPqdX2UKGgGaAloD0MIzCbAsPzJE8CUhpRSlGgVSzJoFkdAq9oFeF+NLnV9lChoBmgJaA9DCKLuA5DaJBbAlIaUUpRoFUsyaBZHQKvZwqyWzGB1fZQoaAZoCWgPQwgTgH9KlZgawJSGlFKUaBVLMmgWR0Cr2YA3kxREdX2UKGgGaAloD0MI7BNAMbJEEMCUhpRSlGgVSzJoFkdAq9stBrvb5HV9lChoBmgJaA9DCENznUZaWhzAlIaUUpRoFUsyaBZHQKva5wtJ4B51fZQoaAZoCWgPQwjbMuAsJZsZwJSGlFKUaBVLMmgWR0Cr2qRaPjn3dX2UKGgGaAloD0MINWCQ9GkVEMCUhpRSlGgVSzJoFkdAq9phz3h4uHV9lChoBmgJaA9DCLAfYoOFYxPAlIaUUpRoFUsyaBZHQKvcER8MNMJ1fZQoaAZoCWgPQwhruTMTDGcVwJSGlFKUaBVLMmgWR0Cr28sl9jPOdX2UKGgGaAloD0MIUYiAQ6gSFsCUhpRSlGgVSzJoFkdAq9uIUJv5xnV9lChoBmgJaA9DCJJYUu4+VxvAlIaUUpRoFUsyaBZHQKvbRc6/7BR1fZQoaAZoCWgPQwjWARB39YoQwJSGlFKUaBVLMmgWR0Cr3O9zGPxQdX2UKGgGaAloD0MI3EduTbqtDcCUhpRSlGgVSzJoFkdAq9ypiG34K3V9lChoBmgJaA9DCC2wx0RKAx3AlIaUUpRoFUsyaBZHQKvcZrv9cbB1fZQoaAZoCWgPQwhw6gPJOw8hwJSGlFKUaBVLMmgWR0Cr3CQ5eZ5SdX2UKGgGaAloD0MIxJWzd0ZLEcCUhpRSlGgVSzJoFkdAq93X2VVxTHV9lChoBmgJaA9DCJ+vWS4bbRXAlIaUUpRoFUsyaBZHQKvdkews5GV1fZQoaAZoCWgPQwj8jAsHQjISwJSGlFKUaBVLMmgWR0Cr3U8IRh+fdX2UKGgGaAloD0MIho2yfjMRDcCUhpRSlGgVSzJoFkdAq90MhNdqtnV9lChoBmgJaA9DCAq9/iQ+9xLAlIaUUpRoFUsyaBZHQKveveMyaeB1fZQoaAZoCWgPQwjBxB9FnTkcwJSGlFKUaBVLMmgWR0Cr3ngPVd5ZdX2UKGgGaAloD0MIn8w/+iZtGcCUhpRSlGgVSzJoFkdAq941XHR1HXV9lChoBmgJaA9DCFsIclDC/BLAlIaUUpRoFUsyaBZHQKvd8vPkaMt1fZQoaAZoCWgPQwj35GGh1mQRwJSGlFKUaBVLMmgWR0Cr36R2B8QadX2UKGgGaAloD0MIdcx5xr78JsCUhpRSlGgVSzJoFkdAq99ehwl0HXV9lChoBmgJaA9DCMwLsI9O7RbAlIaUUpRoFUsyaBZHQKvfG7f51vF1fZQoaAZoCWgPQwiE1sOXibIbwJSGlFKUaBVLMmgWR0Cr3tlCswL3dX2UKGgGaAloD0MIPNujN9z3JsCUhpRSlGgVSzJoFkdAq+CRZIQOF3V9lChoBmgJaA9DCChEwCFUqRLAlIaUUpRoFUsyaBZHQKvgS2cawUx1fZQoaAZoCWgPQwh/9bhvtf4VwJSGlFKUaBVLMmgWR0Cr4AiGWUr1dX2UKGgGaAloD0MILQjlfRx1IMCUhpRSlGgVSzJoFkdAq9/GIl+mWXV9lChoBmgJaA9DCFFrmnecIhLAlIaUUpRoFUsyaBZHQKvhc5rgwXZ1fZQoaAZoCWgPQwgTDr3Fw3sTwJSGlFKUaBVLMmgWR0Cr4S3A/LTydX2UKGgGaAloD0MIpddmYyV+JMCUhpRSlGgVSzJoFkdAq+DrDMvAXXV9lChoBmgJaA9DCNUD5iFTPhHAlIaUUpRoFUsyaBZHQKvgqIj4YaZ1fZQoaAZoCWgPQwi9w+3QsMgYwJSGlFKUaBVLMmgWR0Cr4lylenhsdX2UKGgGaAloD0MIkX2QZcHkFMCUhpRSlGgVSzJoFkdAq+IWr+5vtXV9lChoBmgJaA9DCGZOl8XE5hbAlIaUUpRoFUsyaBZHQKvh0/gzguR1fZQoaAZoCWgPQwjJxoMtdnsZwJSGlFKUaBVLMmgWR0Cr4ZGhmGucdX2UKGgGaAloD0MIz9csl40eFMCUhpRSlGgVSzJoFkdAq+M/tIClrXV9lChoBmgJaA9DCDnWxW004BLAlIaUUpRoFUsyaBZHQKvi+cn3L3d1fZQoaAZoCWgPQwireCPzyI8RwJSGlFKUaBVLMmgWR0Cr4rcHnlnzdX2UKGgGaAloD0MIJetwdJVeIMCUhpRSlGgVSzJoFkdAq+J0rPMSsnV9lChoBmgJaA9DCHFUbqKWdhLAlIaUUpRoFUsyaBZHQKvkIS9ugpV1fZQoaAZoCWgPQwgDJJpAEesOwJSGlFKUaBVLMmgWR0Cr49svRJEqdX2UKGgGaAloD0MIYOXQIttJGMCUhpRSlGgVSzJoFkdAq+OYddVvM3V9lChoBmgJaA9DCMfyrnrAHB/AlIaUUpRoFUsyaBZHQKvjVgYP5Hp1fZQoaAZoCWgPQwiFmbZ/ZeUXwJSGlFKUaBVLMmgWR0Cr5QQXhwVCdX2UKGgGaAloD0MIDtyBOuWhEcCUhpRSlGgVSzJoFkdAq+S+HUMG5nV9lChoBmgJaA9DCOJbWDfe/QzAlIaUUpRoFUsyaBZHQKvke0Re1KJ1fZQoaAZoCWgPQwjUEFX4M/wiwJSGlFKUaBVLMmgWR0Cr5Di+10DEdX2UKGgGaAloD0MIQ48YPbf4IMCUhpRSlGgVSzJoFkdAq+XiqjrRjXV9lChoBmgJaA9DCO3ShsPSAAzAlIaUUpRoFUsyaBZHQKvlnKdQO4J1fZQoaAZoCWgPQwgOSwM/qvETwJSGlFKUaBVLMmgWR0Cr5Vni3ocJdX2UKGgGaAloD0MIon2s4LcJIsCUhpRSlGgVSzJoFkdAq+UXeP7vX3V9lChoBmgJaA9DCDcAGxAhnh/AlIaUUpRoFUsyaBZHQKvmx4yoGY91fZQoaAZoCWgPQwiyaDo7GcwWwJSGlFKUaBVLMmgWR0Cr5oGLcbiqdX2UKGgGaAloD0MIKSMuAI3SGsCUhpRSlGgVSzJoFkdAq+Y+rZJ04nV9lChoBmgJaA9DCAd7E0NyshXAlIaUUpRoFUsyaBZHQKvl/CHARCh1fZQoaAZoCWgPQwhr8L4qF/oawJSGlFKUaBVLMmgWR0Cr56j7655JdX2UKGgGaAloD0MI1Xd+UYIeF8CUhpRSlGgVSzJoFkdAq+djK5kK/nV9lChoBmgJaA9DCPZdEfxvlR3AlIaUUpRoFUsyaBZHQKvnIHC4z8B1fZQoaAZoCWgPQwjn/upx3woOwJSGlFKUaBVLMmgWR0Cr5t4PwuuidX2UKGgGaAloD0MIDMo0mlzsIMCUhpRSlGgVSzJoFkdAq+iWQCCBgHV9lChoBmgJaA9DCDEL7Zxm0RLAlIaUUpRoFUsyaBZHQKvoUGC7K7t1fZQoaAZoCWgPQwhZwARu3c0TwJSGlFKUaBVLMmgWR0Cr6A2X9itrdX2UKGgGaAloD0MIlIjwL4LWF8CUhpRSlGgVSzJoFkdAq+fLOzIFNnV9lChoBmgJaA9DCA1wQbYsnxXAlIaUUpRoFUsyaBZHQKvpgttALRd1fZQoaAZoCWgPQwgpstZQau8UwJSGlFKUaBVLMmgWR0Cr6T0Dlo12dX2UKGgGaAloD0MILspskEmmH8CUhpRSlGgVSzJoFkdAq+j6MefZmXV9lChoBmgJaA9DCMmTpGsm/xfAlIaUUpRoFUsyaBZHQKvot8kUsWh1fZQoaAZoCWgPQwgj93R1x2IjwJSGlFKUaBVLMmgWR0Cr6mIgNgBtdX2UKGgGaAloD0MIDkktlEyuHcCUhpRSlGgVSzJoFkdAq+ocz9CNTHV9lChoBmgJaA9DCETbMXVX5h/AlIaUUpRoFUsyaBZHQKvp2okRjBl1fZQoaAZoCWgPQwgrFOl+ToEQwJSGlFKUaBVLMmgWR0Cr6Zil7+kydX2UKGgGaAloD0MIwsBz7+HyE8CUhpRSlGgVSzJoFkdAq+tEpI+W4XV9lChoBmgJaA9DCF1vm6kQjxDAlIaUUpRoFUsyaBZHQKvq/qDbrTp1fZQoaAZoCWgPQwiPUglP6OUXwJSGlFKUaBVLMmgWR0Cr6rvNFBppdX2UKGgGaAloD0MIQndJnBVhHMCUhpRSlGgVSzJoFkdAq+p5PsRg7nV9lChoBmgJaA9DCHGQEOULWg7AlIaUUpRoFUsyaBZHQKvsIn3ta6l1fZQoaAZoCWgPQwj5Zwbxgd0kwJSGlFKUaBVLMmgWR0Cr69ydFvycdX2UKGgGaAloD0MIEaYol8ZPI8CUhpRSlGgVSzJoFkdAq+uZv5xionV9lChoBmgJaA9DCDp4JjRJ7BzAlIaUUpRoFUsyaBZHQKvrV0Bfa6B1fZQoaAZoCWgPQwhxjjo6rk4gwJSGlFKUaBVLMmgWR0Cr7QV1nuiOdX2UKGgGaAloD0MI0gDeAgmKGcCUhpRSlGgVSzJoFkdAq+y/f642CXV9lChoBmgJaA9DCMhdhCnKBSLAlIaUUpRoFUsyaBZHQKvsfMFlkH51fZQoaAZoCWgPQwjuCRLb3fMRwJSGlFKUaBVLMmgWR0Cr7DpC8e0YdX2UKGgGaAloD0MINnf0v1ybF8CUhpRSlGgVSzJoFkdAq+3iMYMvy3V9lChoBmgJaA9DCLGk3H2OPx3AlIaUUpRoFUsyaBZHQKvtnEm6XjV1fZQoaAZoCWgPQwh0QuigS0AjwJSGlFKUaBVLMmgWR0Cr7VlxOtW/dX2UKGgGaAloD0MIm6vmOSJnIsCUhpRSlGgVSzJoFkdAq+0W8brC33V9lChoBmgJaA9DCNaMDHIXAR7AlIaUUpRoFUsyaBZHQKvuyy/KyOd1fZQoaAZoCWgPQwi++KI9XggRwJSGlFKUaBVLMmgWR0Cr7oVYyO7ydX2UKGgGaAloD0MIV19dFai1EMCUhpRSlGgVSzJoFkdAq+5CgoPTX3V9lChoBmgJaA9DCAOy17s/XhzAlIaUUpRoFUsyaBZHQKvt//oaDPJ1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 75000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7ca80a58f576337fb62afa643fe528a3c0ce40f1b092ca06b82da844ff6b239
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48600f2140439a437725a20dda327ddd3c8f7202f51eaefff30cce0583ec646f
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f744dacbe50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f744daca510>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675437934681650031, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAvz+0PiOS5z2trgY/vz+0PiOS5z2trgY/vz+0PiOS5z2trgY/vz+0PiOS5z2trgY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkePAvx3CRL/NJ4Q/1rGGv/KIxD+Bzre+Jw46vj58fb9GFnY9StVNv2LzsT+n8Ea/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC/P7Q+I5LnPa2uBj+d15A7kTrnOyFGyzq/P7Q+I5LnPa2uBj+d15A7kTrnOyFGyzq/P7Q+I5LnPa2uBj+d15A7kTrnOyFGyzq/P7Q+I5LnPa2uBj+d15A7kTrnOyFGyzqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.35204884 0.1130717 0.52610284]\n [0.35204884 0.1130717 0.52610284]\n [0.35204884 0.1130717 0.52610284]\n [0.35204884 0.1130717 0.52610284]]", "desired_goal": "[[-1.5069448 -0.76858693 1.0324646 ]\n [-1.0523021 1.5354292 -0.35899737]\n [-0.18169461 -0.99017704 0.06007984]\n [-0.8040358 1.39024 -0.77710956]]", "observation": "[[0.35204884 0.1130717 0.52610284 0.00442023 0.00705654 0.00155086]\n [0.35204884 0.1130717 0.52610284 0.00442023 0.00705654 0.00155086]\n [0.35204884 0.1130717 0.52610284 0.00442023 0.00705654 0.00155086]\n [0.35204884 0.1130717 0.52610284 0.00442023 0.00705654 0.00155086]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACbGUPFD75D0nToM+qfcSPvoP+73vIEY+lP68Oytbo7wHHzs+MaW8PVWE5L1EroU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.01815082 0.11180747 0.25645563]\n [ 0.14352287 -0.12258907 0.193485 ]\n [ 0.00576765 -0.01994093 0.18273555]\n [ 0.09211195 -0.11158053 0.26109517]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIL4mzImpCEsCUhpRSlIwBbJRLMowBdJRHQKvZY6lLvkR1fZQoaAZoCWgPQwhzLsVVZd8XwJSGlFKUaBVLMmgWR0Cr2R25Yoy9dX2UKGgGaAloD0MIui2RC85wG8CUhpRSlGgVSzJoFkdAq9ja6asp5XV9lChoBmgJaA9DCKZEEr2MQg7AlIaUUpRoFUsyaBZHQKvYmIBzV+Z1fZQoaAZoCWgPQwj1Zz9SRPYYwJSGlFKUaBVLMmgWR0Cr2kth3JPqdX2UKGgGaAloD0MIzCbAsPzJE8CUhpRSlGgVSzJoFkdAq9oFeF+NLnV9lChoBmgJaA9DCKLuA5DaJBbAlIaUUpRoFUsyaBZHQKvZwqyWzGB1fZQoaAZoCWgPQwgTgH9KlZgawJSGlFKUaBVLMmgWR0Cr2YA3kxREdX2UKGgGaAloD0MI7BNAMbJEEMCUhpRSlGgVSzJoFkdAq9stBrvb5HV9lChoBmgJaA9DCENznUZaWhzAlIaUUpRoFUsyaBZHQKva5wtJ4B51fZQoaAZoCWgPQwjbMuAsJZsZwJSGlFKUaBVLMmgWR0Cr2qRaPjn3dX2UKGgGaAloD0MINWCQ9GkVEMCUhpRSlGgVSzJoFkdAq9phz3h4uHV9lChoBmgJaA9DCLAfYoOFYxPAlIaUUpRoFUsyaBZHQKvcER8MNMJ1fZQoaAZoCWgPQwhruTMTDGcVwJSGlFKUaBVLMmgWR0Cr28sl9jPOdX2UKGgGaAloD0MIUYiAQ6gSFsCUhpRSlGgVSzJoFkdAq9uIUJv5xnV9lChoBmgJaA9DCJJYUu4+VxvAlIaUUpRoFUsyaBZHQKvbRc6/7BR1fZQoaAZoCWgPQwjWARB39YoQwJSGlFKUaBVLMmgWR0Cr3O9zGPxQdX2UKGgGaAloD0MI3EduTbqtDcCUhpRSlGgVSzJoFkdAq9ypiG34K3V9lChoBmgJaA9DCC2wx0RKAx3AlIaUUpRoFUsyaBZHQKvcZrv9cbB1fZQoaAZoCWgPQwhw6gPJOw8hwJSGlFKUaBVLMmgWR0Cr3CQ5eZ5SdX2UKGgGaAloD0MIxJWzd0ZLEcCUhpRSlGgVSzJoFkdAq93X2VVxTHV9lChoBmgJaA9DCJ+vWS4bbRXAlIaUUpRoFUsyaBZHQKvdkews5GV1fZQoaAZoCWgPQwj8jAsHQjISwJSGlFKUaBVLMmgWR0Cr3U8IRh+fdX2UKGgGaAloD0MIho2yfjMRDcCUhpRSlGgVSzJoFkdAq90MhNdqtnV9lChoBmgJaA9DCAq9/iQ+9xLAlIaUUpRoFUsyaBZHQKveveMyaeB1fZQoaAZoCWgPQwjBxB9FnTkcwJSGlFKUaBVLMmgWR0Cr3ngPVd5ZdX2UKGgGaAloD0MIn8w/+iZtGcCUhpRSlGgVSzJoFkdAq941XHR1HXV9lChoBmgJaA9DCFsIclDC/BLAlIaUUpRoFUsyaBZHQKvd8vPkaMt1fZQoaAZoCWgPQwj35GGh1mQRwJSGlFKUaBVLMmgWR0Cr36R2B8QadX2UKGgGaAloD0MIdcx5xr78JsCUhpRSlGgVSzJoFkdAq99ehwl0HXV9lChoBmgJaA9DCMwLsI9O7RbAlIaUUpRoFUsyaBZHQKvfG7f51vF1fZQoaAZoCWgPQwiE1sOXibIbwJSGlFKUaBVLMmgWR0Cr3tlCswL3dX2UKGgGaAloD0MIPNujN9z3JsCUhpRSlGgVSzJoFkdAq+CRZIQOF3V9lChoBmgJaA9DCChEwCFUqRLAlIaUUpRoFUsyaBZHQKvgS2cawUx1fZQoaAZoCWgPQwh/9bhvtf4VwJSGlFKUaBVLMmgWR0Cr4AiGWUr1dX2UKGgGaAloD0MILQjlfRx1IMCUhpRSlGgVSzJoFkdAq9/GIl+mWXV9lChoBmgJaA9DCFFrmnecIhLAlIaUUpRoFUsyaBZHQKvhc5rgwXZ1fZQoaAZoCWgPQwgTDr3Fw3sTwJSGlFKUaBVLMmgWR0Cr4S3A/LTydX2UKGgGaAloD0MIpddmYyV+JMCUhpRSlGgVSzJoFkdAq+DrDMvAXXV9lChoBmgJaA9DCNUD5iFTPhHAlIaUUpRoFUsyaBZHQKvgqIj4YaZ1fZQoaAZoCWgPQwi9w+3QsMgYwJSGlFKUaBVLMmgWR0Cr4lylenhsdX2UKGgGaAloD0MIkX2QZcHkFMCUhpRSlGgVSzJoFkdAq+IWr+5vtXV9lChoBmgJaA9DCGZOl8XE5hbAlIaUUpRoFUsyaBZHQKvh0/gzguR1fZQoaAZoCWgPQwjJxoMtdnsZwJSGlFKUaBVLMmgWR0Cr4ZGhmGucdX2UKGgGaAloD0MIz9csl40eFMCUhpRSlGgVSzJoFkdAq+M/tIClrXV9lChoBmgJaA9DCDnWxW004BLAlIaUUpRoFUsyaBZHQKvi+cn3L3d1fZQoaAZoCWgPQwireCPzyI8RwJSGlFKUaBVLMmgWR0Cr4rcHnlnzdX2UKGgGaAloD0MIJetwdJVeIMCUhpRSlGgVSzJoFkdAq+J0rPMSsnV9lChoBmgJaA9DCHFUbqKWdhLAlIaUUpRoFUsyaBZHQKvkIS9ugpV1fZQoaAZoCWgPQwgDJJpAEesOwJSGlFKUaBVLMmgWR0Cr49svRJEqdX2UKGgGaAloD0MIYOXQIttJGMCUhpRSlGgVSzJoFkdAq+OYddVvM3V9lChoBmgJaA9DCMfyrnrAHB/AlIaUUpRoFUsyaBZHQKvjVgYP5Hp1fZQoaAZoCWgPQwiFmbZ/ZeUXwJSGlFKUaBVLMmgWR0Cr5QQXhwVCdX2UKGgGaAloD0MIDtyBOuWhEcCUhpRSlGgVSzJoFkdAq+S+HUMG5nV9lChoBmgJaA9DCOJbWDfe/QzAlIaUUpRoFUsyaBZHQKvke0Re1KJ1fZQoaAZoCWgPQwjUEFX4M/wiwJSGlFKUaBVLMmgWR0Cr5Di+10DEdX2UKGgGaAloD0MIQ48YPbf4IMCUhpRSlGgVSzJoFkdAq+XiqjrRjXV9lChoBmgJaA9DCO3ShsPSAAzAlIaUUpRoFUsyaBZHQKvlnKdQO4J1fZQoaAZoCWgPQwgOSwM/qvETwJSGlFKUaBVLMmgWR0Cr5Vni3ocJdX2UKGgGaAloD0MIon2s4LcJIsCUhpRSlGgVSzJoFkdAq+UXeP7vX3V9lChoBmgJaA9DCDcAGxAhnh/AlIaUUpRoFUsyaBZHQKvmx4yoGY91fZQoaAZoCWgPQwiyaDo7GcwWwJSGlFKUaBVLMmgWR0Cr5oGLcbiqdX2UKGgGaAloD0MIKSMuAI3SGsCUhpRSlGgVSzJoFkdAq+Y+rZJ04nV9lChoBmgJaA9DCAd7E0NyshXAlIaUUpRoFUsyaBZHQKvl/CHARCh1fZQoaAZoCWgPQwhr8L4qF/oawJSGlFKUaBVLMmgWR0Cr56j7655JdX2UKGgGaAloD0MI1Xd+UYIeF8CUhpRSlGgVSzJoFkdAq+djK5kK/nV9lChoBmgJaA9DCPZdEfxvlR3AlIaUUpRoFUsyaBZHQKvnIHC4z8B1fZQoaAZoCWgPQwjn/upx3woOwJSGlFKUaBVLMmgWR0Cr5t4PwuuidX2UKGgGaAloD0MIDMo0mlzsIMCUhpRSlGgVSzJoFkdAq+iWQCCBgHV9lChoBmgJaA9DCDEL7Zxm0RLAlIaUUpRoFUsyaBZHQKvoUGC7K7t1fZQoaAZoCWgPQwhZwARu3c0TwJSGlFKUaBVLMmgWR0Cr6A2X9itrdX2UKGgGaAloD0MIlIjwL4LWF8CUhpRSlGgVSzJoFkdAq+fLOzIFNnV9lChoBmgJaA9DCA1wQbYsnxXAlIaUUpRoFUsyaBZHQKvpgttALRd1fZQoaAZoCWgPQwgpstZQau8UwJSGlFKUaBVLMmgWR0Cr6T0Dlo12dX2UKGgGaAloD0MILspskEmmH8CUhpRSlGgVSzJoFkdAq+j6MefZmXV9lChoBmgJaA9DCMmTpGsm/xfAlIaUUpRoFUsyaBZHQKvot8kUsWh1fZQoaAZoCWgPQwgj93R1x2IjwJSGlFKUaBVLMmgWR0Cr6mIgNgBtdX2UKGgGaAloD0MIDkktlEyuHcCUhpRSlGgVSzJoFkdAq+ocz9CNTHV9lChoBmgJaA9DCETbMXVX5h/AlIaUUpRoFUsyaBZHQKvp2okRjBl1fZQoaAZoCWgPQwgrFOl+ToEQwJSGlFKUaBVLMmgWR0Cr6Zil7+kydX2UKGgGaAloD0MIwsBz7+HyE8CUhpRSlGgVSzJoFkdAq+tEpI+W4XV9lChoBmgJaA9DCF1vm6kQjxDAlIaUUpRoFUsyaBZHQKvq/qDbrTp1fZQoaAZoCWgPQwiPUglP6OUXwJSGlFKUaBVLMmgWR0Cr6rvNFBppdX2UKGgGaAloD0MIQndJnBVhHMCUhpRSlGgVSzJoFkdAq+p5PsRg7nV9lChoBmgJaA9DCHGQEOULWg7AlIaUUpRoFUsyaBZHQKvsIn3ta6l1fZQoaAZoCWgPQwj5Zwbxgd0kwJSGlFKUaBVLMmgWR0Cr69ydFvycdX2UKGgGaAloD0MIEaYol8ZPI8CUhpRSlGgVSzJoFkdAq+uZv5xionV9lChoBmgJaA9DCDp4JjRJ7BzAlIaUUpRoFUsyaBZHQKvrV0Bfa6B1fZQoaAZoCWgPQwhxjjo6rk4gwJSGlFKUaBVLMmgWR0Cr7QV1nuiOdX2UKGgGaAloD0MI0gDeAgmKGcCUhpRSlGgVSzJoFkdAq+y/f642CXV9lChoBmgJaA9DCMhdhCnKBSLAlIaUUpRoFUsyaBZHQKvsfMFlkH51fZQoaAZoCWgPQwjuCRLb3fMRwJSGlFKUaBVLMmgWR0Cr7DpC8e0YdX2UKGgGaAloD0MINnf0v1ybF8CUhpRSlGgVSzJoFkdAq+3iMYMvy3V9lChoBmgJaA9DCLGk3H2OPx3AlIaUUpRoFUsyaBZHQKvtnEm6XjV1fZQoaAZoCWgPQwh0QuigS0AjwJSGlFKUaBVLMmgWR0Cr7VlxOtW/dX2UKGgGaAloD0MIm6vmOSJnIsCUhpRSlGgVSzJoFkdAq+0W8brC33V9lChoBmgJaA9DCNaMDHIXAR7AlIaUUpRoFUsyaBZHQKvuyy/KyOd1fZQoaAZoCWgPQwi++KI9XggRwJSGlFKUaBVLMmgWR0Cr7oVYyO7ydX2UKGgGaAloD0MIV19dFai1EMCUhpRSlGgVSzJoFkdAq+5CgoPTX3V9lChoBmgJaA9DCAOy17s/XhzAlIaUUpRoFUsyaBZHQKvt//oaDPJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 75000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (914 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -6.469306699093432, "std_reward": 2.0010826925357703, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-03T16:28:29.806653"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:caf8d099bc6d33d86306c69a31982fb8826743b43af4a0fb4ee5365a99c91f56
3
+ size 3056