Files changed (1) hide show
  1. README.md +45 -0
README.md CHANGED
@@ -1,3 +1,48 @@
1
  ---
2
  license: other
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: other
3
+
4
+ tags:
5
+ - Shape modeling
6
+ - Volumetric models
7
+
8
+ datasets:
9
+ - shapenet
10
  ---
11
+
12
+ ### Model Description
13
+
14
+ - SDF-StyleGAN: Implicit SDF-Based StyleGAN for 3D Shape Generation
15
+ - Zheng, Xin-Yang and Liu, Yang and Wang, Peng-Shuai and Tong, Xin, 2022
16
+
17
+ The proposed deeplearning model for 3D shape generation called signed distance field (SDF) - SDF-StyleGAN, whicH is based on StyleGAN2. The goal of this approach is to minimize the visual and geometric differences between the generated shapes and a collection of existing shapes.
18
+
19
+
20
+ ### Documents
21
+
22
+ - [GitHub Repo](https://github.com/Zhengxinyang/SDF-StyleGAN)
23
+ - [Paper - SDF-StyleGAN: Implicit SDF-Based StyleGAN for 3D Shape Generation](https://arxiv.org/pdf/2206.12055.pdf)
24
+
25
+ ### Datasets
26
+
27
+ ShapeNet is a comprehensive 3D shape dataset created for research in computer graphics, computer vision, robotics and related diciplines.
28
+
29
+
30
+ - [Offical Dataset of ShapeNet](https://shapenet.org/)
31
+ - [author's data preparation script](https://github.com/Zhengxinyang/SDF-StyleGAN)
32
+ - [author's training data](https://pan.baidu.com/s/1nVS7wlcOz62nYBgjp_M8Yg?pwd=oj1b)
33
+
34
+
35
+ ### How to use
36
+
37
+ Training snippets are published under the official GitHub repository above.
38
+
39
+ ### BibTeX Entry and Citation Info
40
+
41
+ ```
42
+ @inproceedings{zheng2022sdfstylegan,
43
+ title = {SDF-StyleGAN: Implicit SDF-Based StyleGAN for 3D Shape Generation},
44
+ author = {Zheng, Xin-Yang and Liu, Yang and Wang, Peng-Shuai and Tong, Xin},
45
+ booktitle = {Comput. Graph. Forum (SGP)},
46
+ year = {2022},
47
+ }
48
+ ```