Sesgaro commited on
Commit
f2e48ce
1 Parent(s): 8fea348

Upload 11 files

Browse files
README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ybelkada/falcon-7b-sharded-bf16
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.2.dev0
adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "ybelkada/falcon-7b-sharded-bf16",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.1,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 64,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "query_key_value"
23
+ ],
24
+ "task_type": "CAUSAL_LM",
25
+ "use_rslora": false
26
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a72ff6d1c889934a11e3061c9b0576c254e946970683bdb153c912a166ad0517
3
+ size 75507072
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4060759bc28f313938c3b13b36cd2f1bd4d2fc166c65316bdbf2c96e1f158ab
3
+ size 151034938
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0675bf90b2a9e7869407bcafc5146c769e7818121494c93423dac43ee50b6319
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19bcbcfd505eb4fc1a12c7d832a77268d82b4a9b82157e01d48b5fb1cf5fbcc1
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ ">>TITLE<<",
4
+ ">>ABSTRACT<<",
5
+ ">>INTRODUCTION<<",
6
+ ">>SUMMARY<<",
7
+ ">>COMMENT<<",
8
+ ">>ANSWER<<",
9
+ ">>QUESTION<<",
10
+ ">>DOMAIN<<",
11
+ ">>PREFIX<<",
12
+ ">>SUFFIX<<",
13
+ ">>MIDDLE<<"
14
+ ],
15
+ "eos_token": {
16
+ "content": "<|endoftext|>",
17
+ "lstrip": false,
18
+ "normalized": false,
19
+ "rstrip": false,
20
+ "single_word": false
21
+ },
22
+ "pad_token": "<|endoftext|>"
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": ">>TITLE<<",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": ">>ABSTRACT<<",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": ">>INTRODUCTION<<",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": ">>SUMMARY<<",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "4": {
37
+ "content": ">>COMMENT<<",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "5": {
45
+ "content": ">>ANSWER<<",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "6": {
53
+ "content": ">>QUESTION<<",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "7": {
61
+ "content": ">>DOMAIN<<",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "8": {
69
+ "content": ">>PREFIX<<",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "9": {
77
+ "content": ">>SUFFIX<<",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "10": {
85
+ "content": ">>MIDDLE<<",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "11": {
93
+ "content": "<|endoftext|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ }
100
+ },
101
+ "additional_special_tokens": [
102
+ ">>TITLE<<",
103
+ ">>ABSTRACT<<",
104
+ ">>INTRODUCTION<<",
105
+ ">>SUMMARY<<",
106
+ ">>COMMENT<<",
107
+ ">>ANSWER<<",
108
+ ">>QUESTION<<",
109
+ ">>DOMAIN<<",
110
+ ">>PREFIX<<",
111
+ ">>SUFFIX<<",
112
+ ">>MIDDLE<<"
113
+ ],
114
+ "clean_up_tokenization_spaces": true,
115
+ "eos_token": "<|endoftext|>",
116
+ "model_max_length": 2048,
117
+ "pad_token": "<|endoftext|>",
118
+ "tokenizer_class": "PreTrainedTokenizerFast"
119
+ }
trainer_state.json ADDED
@@ -0,0 +1,621 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.33789491468153404,
5
+ "eval_steps": 500,
6
+ "global_step": 1000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 0.0002,
14
+ "loss": 1.9022,
15
+ "step": 10
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 0.0002,
20
+ "loss": 1.9475,
21
+ "step": 20
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 0.0002,
26
+ "loss": 1.8892,
27
+ "step": 30
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 0.0002,
32
+ "loss": 1.9937,
33
+ "step": 40
34
+ },
35
+ {
36
+ "epoch": 0.02,
37
+ "learning_rate": 0.0002,
38
+ "loss": 2.2178,
39
+ "step": 50
40
+ },
41
+ {
42
+ "epoch": 0.02,
43
+ "learning_rate": 0.0002,
44
+ "loss": 1.5613,
45
+ "step": 60
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 0.0002,
50
+ "loss": 1.5452,
51
+ "step": 70
52
+ },
53
+ {
54
+ "epoch": 0.03,
55
+ "learning_rate": 0.0002,
56
+ "loss": 1.5586,
57
+ "step": 80
58
+ },
59
+ {
60
+ "epoch": 0.03,
61
+ "learning_rate": 0.0002,
62
+ "loss": 1.677,
63
+ "step": 90
64
+ },
65
+ {
66
+ "epoch": 0.03,
67
+ "learning_rate": 0.0002,
68
+ "loss": 1.937,
69
+ "step": 100
70
+ },
71
+ {
72
+ "epoch": 0.04,
73
+ "learning_rate": 0.0002,
74
+ "loss": 1.4744,
75
+ "step": 110
76
+ },
77
+ {
78
+ "epoch": 0.04,
79
+ "learning_rate": 0.0002,
80
+ "loss": 1.4896,
81
+ "step": 120
82
+ },
83
+ {
84
+ "epoch": 0.04,
85
+ "learning_rate": 0.0002,
86
+ "loss": 1.5956,
87
+ "step": 130
88
+ },
89
+ {
90
+ "epoch": 0.05,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.5633,
93
+ "step": 140
94
+ },
95
+ {
96
+ "epoch": 0.05,
97
+ "learning_rate": 0.0002,
98
+ "loss": 1.7898,
99
+ "step": 150
100
+ },
101
+ {
102
+ "epoch": 0.05,
103
+ "learning_rate": 0.0002,
104
+ "loss": 1.4845,
105
+ "step": 160
106
+ },
107
+ {
108
+ "epoch": 0.06,
109
+ "learning_rate": 0.0002,
110
+ "loss": 1.4648,
111
+ "step": 170
112
+ },
113
+ {
114
+ "epoch": 0.06,
115
+ "learning_rate": 0.0002,
116
+ "loss": 1.4772,
117
+ "step": 180
118
+ },
119
+ {
120
+ "epoch": 0.06,
121
+ "learning_rate": 0.0002,
122
+ "loss": 1.5044,
123
+ "step": 190
124
+ },
125
+ {
126
+ "epoch": 0.07,
127
+ "learning_rate": 0.0002,
128
+ "loss": 1.6671,
129
+ "step": 200
130
+ },
131
+ {
132
+ "epoch": 0.07,
133
+ "learning_rate": 0.0002,
134
+ "loss": 1.4571,
135
+ "step": 210
136
+ },
137
+ {
138
+ "epoch": 0.07,
139
+ "learning_rate": 0.0002,
140
+ "loss": 1.4437,
141
+ "step": 220
142
+ },
143
+ {
144
+ "epoch": 0.08,
145
+ "learning_rate": 0.0002,
146
+ "loss": 1.4913,
147
+ "step": 230
148
+ },
149
+ {
150
+ "epoch": 0.08,
151
+ "learning_rate": 0.0002,
152
+ "loss": 1.5988,
153
+ "step": 240
154
+ },
155
+ {
156
+ "epoch": 0.08,
157
+ "learning_rate": 0.0002,
158
+ "loss": 1.7506,
159
+ "step": 250
160
+ },
161
+ {
162
+ "epoch": 0.09,
163
+ "learning_rate": 0.0002,
164
+ "loss": 1.474,
165
+ "step": 260
166
+ },
167
+ {
168
+ "epoch": 0.09,
169
+ "learning_rate": 0.0002,
170
+ "loss": 1.4722,
171
+ "step": 270
172
+ },
173
+ {
174
+ "epoch": 0.09,
175
+ "learning_rate": 0.0002,
176
+ "loss": 1.4948,
177
+ "step": 280
178
+ },
179
+ {
180
+ "epoch": 0.1,
181
+ "learning_rate": 0.0002,
182
+ "loss": 1.5451,
183
+ "step": 290
184
+ },
185
+ {
186
+ "epoch": 0.1,
187
+ "learning_rate": 0.0002,
188
+ "loss": 1.6789,
189
+ "step": 300
190
+ },
191
+ {
192
+ "epoch": 0.1,
193
+ "learning_rate": 0.0002,
194
+ "loss": 1.4969,
195
+ "step": 310
196
+ },
197
+ {
198
+ "epoch": 0.11,
199
+ "learning_rate": 0.0002,
200
+ "loss": 1.4503,
201
+ "step": 320
202
+ },
203
+ {
204
+ "epoch": 0.11,
205
+ "learning_rate": 0.0002,
206
+ "loss": 1.4787,
207
+ "step": 330
208
+ },
209
+ {
210
+ "epoch": 0.11,
211
+ "learning_rate": 0.0002,
212
+ "loss": 1.5204,
213
+ "step": 340
214
+ },
215
+ {
216
+ "epoch": 0.12,
217
+ "learning_rate": 0.0002,
218
+ "loss": 1.7502,
219
+ "step": 350
220
+ },
221
+ {
222
+ "epoch": 0.12,
223
+ "learning_rate": 0.0002,
224
+ "loss": 1.4734,
225
+ "step": 360
226
+ },
227
+ {
228
+ "epoch": 0.13,
229
+ "learning_rate": 0.0002,
230
+ "loss": 1.4445,
231
+ "step": 370
232
+ },
233
+ {
234
+ "epoch": 0.13,
235
+ "learning_rate": 0.0002,
236
+ "loss": 1.446,
237
+ "step": 380
238
+ },
239
+ {
240
+ "epoch": 0.13,
241
+ "learning_rate": 0.0002,
242
+ "loss": 1.5525,
243
+ "step": 390
244
+ },
245
+ {
246
+ "epoch": 0.14,
247
+ "learning_rate": 0.0002,
248
+ "loss": 1.6735,
249
+ "step": 400
250
+ },
251
+ {
252
+ "epoch": 0.14,
253
+ "learning_rate": 0.0002,
254
+ "loss": 1.4653,
255
+ "step": 410
256
+ },
257
+ {
258
+ "epoch": 0.14,
259
+ "learning_rate": 0.0002,
260
+ "loss": 1.4478,
261
+ "step": 420
262
+ },
263
+ {
264
+ "epoch": 0.15,
265
+ "learning_rate": 0.0002,
266
+ "loss": 1.4446,
267
+ "step": 430
268
+ },
269
+ {
270
+ "epoch": 0.15,
271
+ "learning_rate": 0.0002,
272
+ "loss": 1.491,
273
+ "step": 440
274
+ },
275
+ {
276
+ "epoch": 0.15,
277
+ "learning_rate": 0.0002,
278
+ "loss": 1.7378,
279
+ "step": 450
280
+ },
281
+ {
282
+ "epoch": 0.16,
283
+ "learning_rate": 0.0002,
284
+ "loss": 1.4653,
285
+ "step": 460
286
+ },
287
+ {
288
+ "epoch": 0.16,
289
+ "learning_rate": 0.0002,
290
+ "loss": 1.4435,
291
+ "step": 470
292
+ },
293
+ {
294
+ "epoch": 0.16,
295
+ "learning_rate": 0.0002,
296
+ "loss": 1.4698,
297
+ "step": 480
298
+ },
299
+ {
300
+ "epoch": 0.17,
301
+ "learning_rate": 0.0002,
302
+ "loss": 1.4905,
303
+ "step": 490
304
+ },
305
+ {
306
+ "epoch": 0.17,
307
+ "learning_rate": 0.0002,
308
+ "loss": 1.6413,
309
+ "step": 500
310
+ },
311
+ {
312
+ "epoch": 0.17,
313
+ "learning_rate": 0.0002,
314
+ "loss": 1.4424,
315
+ "step": 510
316
+ },
317
+ {
318
+ "epoch": 0.18,
319
+ "learning_rate": 0.0002,
320
+ "loss": 1.4612,
321
+ "step": 520
322
+ },
323
+ {
324
+ "epoch": 0.18,
325
+ "learning_rate": 0.0002,
326
+ "loss": 1.4572,
327
+ "step": 530
328
+ },
329
+ {
330
+ "epoch": 0.18,
331
+ "learning_rate": 0.0002,
332
+ "loss": 1.5237,
333
+ "step": 540
334
+ },
335
+ {
336
+ "epoch": 0.19,
337
+ "learning_rate": 0.0002,
338
+ "loss": 1.6122,
339
+ "step": 550
340
+ },
341
+ {
342
+ "epoch": 0.19,
343
+ "learning_rate": 0.0002,
344
+ "loss": 1.4277,
345
+ "step": 560
346
+ },
347
+ {
348
+ "epoch": 0.19,
349
+ "learning_rate": 0.0002,
350
+ "loss": 1.4708,
351
+ "step": 570
352
+ },
353
+ {
354
+ "epoch": 0.2,
355
+ "learning_rate": 0.0002,
356
+ "loss": 1.4843,
357
+ "step": 580
358
+ },
359
+ {
360
+ "epoch": 0.2,
361
+ "learning_rate": 0.0002,
362
+ "loss": 1.4576,
363
+ "step": 590
364
+ },
365
+ {
366
+ "epoch": 0.2,
367
+ "learning_rate": 0.0002,
368
+ "loss": 1.7181,
369
+ "step": 600
370
+ },
371
+ {
372
+ "epoch": 0.21,
373
+ "learning_rate": 0.0002,
374
+ "loss": 1.4435,
375
+ "step": 610
376
+ },
377
+ {
378
+ "epoch": 0.21,
379
+ "learning_rate": 0.0002,
380
+ "loss": 1.4587,
381
+ "step": 620
382
+ },
383
+ {
384
+ "epoch": 0.21,
385
+ "learning_rate": 0.0002,
386
+ "loss": 1.4885,
387
+ "step": 630
388
+ },
389
+ {
390
+ "epoch": 0.22,
391
+ "learning_rate": 0.0002,
392
+ "loss": 1.4864,
393
+ "step": 640
394
+ },
395
+ {
396
+ "epoch": 0.22,
397
+ "learning_rate": 0.0002,
398
+ "loss": 1.6319,
399
+ "step": 650
400
+ },
401
+ {
402
+ "epoch": 0.22,
403
+ "learning_rate": 0.0002,
404
+ "loss": 1.459,
405
+ "step": 660
406
+ },
407
+ {
408
+ "epoch": 0.23,
409
+ "learning_rate": 0.0002,
410
+ "loss": 1.4425,
411
+ "step": 670
412
+ },
413
+ {
414
+ "epoch": 0.23,
415
+ "learning_rate": 0.0002,
416
+ "loss": 1.4465,
417
+ "step": 680
418
+ },
419
+ {
420
+ "epoch": 0.23,
421
+ "learning_rate": 0.0002,
422
+ "loss": 1.5243,
423
+ "step": 690
424
+ },
425
+ {
426
+ "epoch": 0.24,
427
+ "learning_rate": 0.0002,
428
+ "loss": 1.7044,
429
+ "step": 700
430
+ },
431
+ {
432
+ "epoch": 0.24,
433
+ "learning_rate": 0.0002,
434
+ "loss": 1.4758,
435
+ "step": 710
436
+ },
437
+ {
438
+ "epoch": 0.24,
439
+ "learning_rate": 0.0002,
440
+ "loss": 1.4324,
441
+ "step": 720
442
+ },
443
+ {
444
+ "epoch": 0.25,
445
+ "learning_rate": 0.0002,
446
+ "loss": 1.4978,
447
+ "step": 730
448
+ },
449
+ {
450
+ "epoch": 0.25,
451
+ "learning_rate": 0.0002,
452
+ "loss": 1.4768,
453
+ "step": 740
454
+ },
455
+ {
456
+ "epoch": 0.25,
457
+ "learning_rate": 0.0002,
458
+ "loss": 1.6861,
459
+ "step": 750
460
+ },
461
+ {
462
+ "epoch": 0.26,
463
+ "learning_rate": 0.0002,
464
+ "loss": 1.4224,
465
+ "step": 760
466
+ },
467
+ {
468
+ "epoch": 0.26,
469
+ "learning_rate": 0.0002,
470
+ "loss": 1.4528,
471
+ "step": 770
472
+ },
473
+ {
474
+ "epoch": 0.26,
475
+ "learning_rate": 0.0002,
476
+ "loss": 1.4434,
477
+ "step": 780
478
+ },
479
+ {
480
+ "epoch": 0.27,
481
+ "learning_rate": 0.0002,
482
+ "loss": 1.5349,
483
+ "step": 790
484
+ },
485
+ {
486
+ "epoch": 0.27,
487
+ "learning_rate": 0.0002,
488
+ "loss": 1.584,
489
+ "step": 800
490
+ },
491
+ {
492
+ "epoch": 0.27,
493
+ "learning_rate": 0.0002,
494
+ "loss": 1.441,
495
+ "step": 810
496
+ },
497
+ {
498
+ "epoch": 0.28,
499
+ "learning_rate": 0.0002,
500
+ "loss": 1.4197,
501
+ "step": 820
502
+ },
503
+ {
504
+ "epoch": 0.28,
505
+ "learning_rate": 0.0002,
506
+ "loss": 1.4941,
507
+ "step": 830
508
+ },
509
+ {
510
+ "epoch": 0.28,
511
+ "learning_rate": 0.0002,
512
+ "loss": 1.4482,
513
+ "step": 840
514
+ },
515
+ {
516
+ "epoch": 0.29,
517
+ "learning_rate": 0.0002,
518
+ "loss": 1.6076,
519
+ "step": 850
520
+ },
521
+ {
522
+ "epoch": 0.29,
523
+ "learning_rate": 0.0002,
524
+ "loss": 1.4251,
525
+ "step": 860
526
+ },
527
+ {
528
+ "epoch": 0.29,
529
+ "learning_rate": 0.0002,
530
+ "loss": 1.4146,
531
+ "step": 870
532
+ },
533
+ {
534
+ "epoch": 0.3,
535
+ "learning_rate": 0.0002,
536
+ "loss": 1.4785,
537
+ "step": 880
538
+ },
539
+ {
540
+ "epoch": 0.3,
541
+ "learning_rate": 0.0002,
542
+ "loss": 1.4505,
543
+ "step": 890
544
+ },
545
+ {
546
+ "epoch": 0.3,
547
+ "learning_rate": 0.0002,
548
+ "loss": 1.5821,
549
+ "step": 900
550
+ },
551
+ {
552
+ "epoch": 0.31,
553
+ "learning_rate": 0.0002,
554
+ "loss": 1.4202,
555
+ "step": 910
556
+ },
557
+ {
558
+ "epoch": 0.31,
559
+ "learning_rate": 0.0002,
560
+ "loss": 1.4074,
561
+ "step": 920
562
+ },
563
+ {
564
+ "epoch": 0.31,
565
+ "learning_rate": 0.0002,
566
+ "loss": 1.4604,
567
+ "step": 930
568
+ },
569
+ {
570
+ "epoch": 0.32,
571
+ "learning_rate": 0.0002,
572
+ "loss": 1.4819,
573
+ "step": 940
574
+ },
575
+ {
576
+ "epoch": 0.32,
577
+ "learning_rate": 0.0002,
578
+ "loss": 1.6435,
579
+ "step": 950
580
+ },
581
+ {
582
+ "epoch": 0.32,
583
+ "learning_rate": 0.0002,
584
+ "loss": 1.4448,
585
+ "step": 960
586
+ },
587
+ {
588
+ "epoch": 0.33,
589
+ "learning_rate": 0.0002,
590
+ "loss": 1.3856,
591
+ "step": 970
592
+ },
593
+ {
594
+ "epoch": 0.33,
595
+ "learning_rate": 0.0002,
596
+ "loss": 1.3814,
597
+ "step": 980
598
+ },
599
+ {
600
+ "epoch": 0.33,
601
+ "learning_rate": 0.0002,
602
+ "loss": 1.4481,
603
+ "step": 990
604
+ },
605
+ {
606
+ "epoch": 0.34,
607
+ "learning_rate": 0.0002,
608
+ "loss": 1.6502,
609
+ "step": 1000
610
+ }
611
+ ],
612
+ "logging_steps": 10,
613
+ "max_steps": 1000,
614
+ "num_input_tokens_seen": 0,
615
+ "num_train_epochs": 1,
616
+ "save_steps": 200,
617
+ "total_flos": 6.845729080171008e+16,
618
+ "train_batch_size": 4,
619
+ "trial_name": null,
620
+ "trial_params": null
621
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0fec812a6da6a24381376f43ae11246474e6cb6fd41ead82d36f46f4caa81473
3
+ size 4728