File size: 4,424 Bytes
c13f9aa f3fed70 01df22c c13f9aa 01df22c 9fabcad 01df22c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
license: llama3
library_name: xtuner
datasets:
- Lin-Chen/ShareGPT4V
pipeline_tag: image-text-to-text
---
---
**Notice:** This repository hosts the `llava-llama-3-8b-v1_1-hf` model, which has been specifically modified to address compatibility issues with the pure `transformers` library. The original model configuration and index files have been manually adjusted to ensure seamless integration and functionality with the `transformers` setup. These adjustments have not altered the model weights.
---
<div align="center">
<img src="https://github.com/InternLM/lmdeploy/assets/36994684/0cf8d00f-e86b-40ba-9b54-dc8f1bc6c8d8" width="600"/>
[![Generic badge](https://img.shields.io/badge/GitHub-%20XTuner-black.svg)](https://github.com/InternLM/xtuner)
</div>
## Model
llava-llama-3-8b-v1_1-hf is a LLaVA model fine-tuned from [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) and [CLIP-ViT-Large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) with [ShareGPT4V-PT](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V) and [InternVL-SFT](https://github.com/OpenGVLab/InternVL/tree/main/internvl_chat#prepare-training-datasets) by [XTuner](https://github.com/InternLM/xtuner).
## Details
| Model | Visual Encoder | Projector | Resolution | Pretraining Strategy | Fine-tuning Strategy | Pretrain Dataset | Fine-tune Dataset |
| :-------------------- | ------------------: | --------: | ---------: | ---------------------: | ------------------------: | ------------------------: | -----------------------: |
| LLaVA-v1.5-7B | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, Frozen ViT | LLaVA-PT (558K) | LLaVA-Mix (665K) |
| LLaVA-Llama-3-8B | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, LoRA ViT | LLaVA-PT (558K) | LLaVA-Mix (665K) |
| LLaVA-Llama-3-8B-v1.1 | CLIP-L | MLP | 336 | Frozen LLM, Frozen ViT | Full LLM, LoRA ViT | ShareGPT4V-PT (1246K) | InternVL-SFT (1268K) |
## Results
<div align="center">
<img src="https://github.com/InternLM/xtuner/assets/36994684/a157638c-3500-44ed-bfab-d8d8249f91bb" alt="Image" width=500" />
</div>
| Model | MMBench Test (EN) | MMBench Test (CN) | CCBench Dev | MMMU Val | SEED-IMG | AI2D Test | ScienceQA Test | HallusionBench aAcc | POPE | GQA | TextVQA | MME | MMStar |
| :-------------------- | :---------------: | :---------------: | :---------: | :-------: | :------: | :-------: | :------------: | :-----------------: | :--: | :--: | :-----: | :------: | :----: |
| LLaVA-v1.5-7B | 66.5 | 59.0 | 27.5 | 35.3 | 60.5 | 54.8 | 70.4 | 44.9 | 85.9 | 62.0 | 58.2 | 1511/348 | 30.3 |
| LLaVA-Llama-3-8B | 68.9 | 61.6 | 30.4 | 36.8 | 69.8 | 60.9 | 73.3 | 47.3 | 87.2 | 63.5 | 58.0 | 1506/295 | 38.2 |
| LLaVA-Llama-3-8B-v1.1 | 72.3 | 66.4 | 31.6 | 36.8 | 70.1 | 70.0 | 72.9 | 47.7 | 86.4 | 62.6 | 59.0 | 1469/349 | 45.1 |
## QuickStart
### Chat with lmdeploy
1. Installation
```
pip install 'lmdeploy>=0.4.0'
pip install git+https://github.com/haotian-liu/LLaVA.git
```
2. Run
```python
from lmdeploy import pipeline, ChatTemplateConfig
from lmdeploy.vl import load_image
pipe = pipeline('xtuner/llava-llama-3-8b-v1_1-hf',
chat_template_config=ChatTemplateConfig(model_name='llama3'))
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
response = pipe(('describe this image', image))
print(response)
```
More details can be found on [inference](https://lmdeploy.readthedocs.io/en/latest/inference/vl_pipeline.html) and [serving](https://lmdeploy.readthedocs.io/en/latest/serving/api_server_vl.html) docs.
### Chat with CLI
See [here](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-hf/discussions/1)!
## Citation
```bibtex
@misc{2023xtuner,
title={XTuner: A Toolkit for Efficiently Fine-tuning LLM},
author={XTuner Contributors},
howpublished = {\url{https://github.com/InternLM/xtuner}},
year={2023}
}
``` |