SeyedAli commited on
Commit
b354986
1 Parent(s): 95c4f44

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -2
README.md CHANGED
@@ -14,6 +14,8 @@ language:
14
  - fa
15
  library_name: peft
16
  pipeline_tag: text-classification
 
 
17
  ---
18
 
19
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -21,7 +23,7 @@ should probably proofread and complete it, then remove this comment. -->
21
 
22
  # Persian-Text-Sentiment-Bert-LORA
23
 
24
- This model is a fine-tuned version of [HooshvareLab/bert-base-parsbert-uncased](https://huggingface.co/HooshvareLab/bert-base-parsbert-uncased) on an unknown dataset.
25
  It achieves the following results on the evaluation set:
26
  - Loss: 0.3427
27
  - Precision: 0.8579
@@ -40,7 +42,7 @@ This is how to use this model in an example
40
  from peft import PeftModel
41
  from transformers import pipeline
42
  modelname="SeyedAli/Persian-Text-Sentiment-Bert-LORA"
43
- tokenizer=AutoTokenizer.from_pretrained("HooshvareLab/bert-base-parsbert-uncased",model_max_length=100, add_special_tokens = True)
44
  model=AutoModelForSequenceClassification.from_pretrained("HooshvareLab/bert-base-parsbert-uncased")
45
  model = PeftModel.from_pretrained(model, modelname)
46
  pipe = pipeline("text-classification", model=model,tokenizer=tokenizer)
 
14
  - fa
15
  library_name: peft
16
  pipeline_tag: text-classification
17
+ datasets:
18
+ - SeyedAli/Persian-Text-Sentiment
19
  ---
20
 
21
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
23
 
24
  # Persian-Text-Sentiment-Bert-LORA
25
 
26
+ This model is a Adapter for [HooshvareLab/bert-base-parsbert-uncased](https://huggingface.co/HooshvareLab/bert-base-parsbert-uncased) on an unknown dataset in Persian Sentment Analysis Task.
27
  It achieves the following results on the evaluation set:
28
  - Loss: 0.3427
29
  - Precision: 0.8579
 
42
  from peft import PeftModel
43
  from transformers import pipeline
44
  modelname="SeyedAli/Persian-Text-Sentiment-Bert-LORA"
45
+ tokenizer=AutoTokenizer.from_pretrained("HooshvareLab/bert-base-parsbert-uncased")
46
  model=AutoModelForSequenceClassification.from_pretrained("HooshvareLab/bert-base-parsbert-uncased")
47
  model = PeftModel.from_pretrained(model, modelname)
48
  pipe = pipeline("text-classification", model=model,tokenizer=tokenizer)