Update README.md
Browse files
README.md
CHANGED
@@ -14,6 +14,8 @@ language:
|
|
14 |
- fa
|
15 |
library_name: peft
|
16 |
pipeline_tag: text-classification
|
|
|
|
|
17 |
---
|
18 |
|
19 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -21,7 +23,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
21 |
|
22 |
# Persian-Text-Sentiment-Bert-LORA
|
23 |
|
24 |
-
This model is a
|
25 |
It achieves the following results on the evaluation set:
|
26 |
- Loss: 0.3427
|
27 |
- Precision: 0.8579
|
@@ -40,7 +42,7 @@ This is how to use this model in an example
|
|
40 |
from peft import PeftModel
|
41 |
from transformers import pipeline
|
42 |
modelname="SeyedAli/Persian-Text-Sentiment-Bert-LORA"
|
43 |
-
tokenizer=AutoTokenizer.from_pretrained("HooshvareLab/bert-base-parsbert-uncased"
|
44 |
model=AutoModelForSequenceClassification.from_pretrained("HooshvareLab/bert-base-parsbert-uncased")
|
45 |
model = PeftModel.from_pretrained(model, modelname)
|
46 |
pipe = pipeline("text-classification", model=model,tokenizer=tokenizer)
|
|
|
14 |
- fa
|
15 |
library_name: peft
|
16 |
pipeline_tag: text-classification
|
17 |
+
datasets:
|
18 |
+
- SeyedAli/Persian-Text-Sentiment
|
19 |
---
|
20 |
|
21 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
23 |
|
24 |
# Persian-Text-Sentiment-Bert-LORA
|
25 |
|
26 |
+
This model is a Adapter for [HooshvareLab/bert-base-parsbert-uncased](https://huggingface.co/HooshvareLab/bert-base-parsbert-uncased) on an unknown dataset in Persian Sentment Analysis Task.
|
27 |
It achieves the following results on the evaluation set:
|
28 |
- Loss: 0.3427
|
29 |
- Precision: 0.8579
|
|
|
42 |
from peft import PeftModel
|
43 |
from transformers import pipeline
|
44 |
modelname="SeyedAli/Persian-Text-Sentiment-Bert-LORA"
|
45 |
+
tokenizer=AutoTokenizer.from_pretrained("HooshvareLab/bert-base-parsbert-uncased")
|
46 |
model=AutoModelForSequenceClassification.from_pretrained("HooshvareLab/bert-base-parsbert-uncased")
|
47 |
model = PeftModel.from_pretrained(model, modelname)
|
48 |
pipe = pipeline("text-classification", model=model,tokenizer=tokenizer)
|