File size: 1,839 Bytes
f5f6a25
 
 
 
 
03068c7
f5f6a25
 
 
 
 
03068c7
 
f5f6a25
 
 
 
 
8cf51aa
f5f6a25
b7ee0a4
f5f6a25
305d097
1d071af
f5f6a25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fce23b7
f5f6a25
 
 
 
 
 
 
03068c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
- Remote-Sensing
metrics:
- accuracy
model-index:
- name: Remote-Sensing-Classification-image-classification
  results: []
datasets:
- jonathan-roberts1/RSSCN7
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Remote-Sensing-UAV-image-classification

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an [jonathan-roberts1/RSSCN7](https://huggingface.co/datasets/jonathan-roberts1/RSSCN7) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0593
- Accuracy: 0.9907

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3922        | 0.71  | 100  | 0.4227          | 0.8821   |
| 0.2986        | 1.43  | 200  | 0.3142          | 0.9089   |
| 0.1109        | 2.14  | 300  | 0.2056          | 0.9518   |
| 0.0864        | 2.86  | 400  | 0.2472          | 0.9375   |
| 0.0193        | 3.57  | 500  | 0.0593          | 0.9907   |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1