File size: 5,347 Bytes
7a5f7e3
f10d7de
 
259c9c3
f10d7de
 
259c9c3
 
65a7572
259c9c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b50f612
 
63f8af3
 
f6df300
 
 
 
 
 
 
 
4b47c40
 
f6df300
 
 
 
 
4b47c40
63f8af3
 
f6df300
 
 
 
abe390e
 
 
 
 
f6df300
 
 
abe390e
259c9c3
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---
language:
- en
license: mit
tags:
- gpt2-medium
datasets:
- databricks/databricks-dolly-15k
pipeline_tag: text-generation
model-index:
- name: Instruct_GPT
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 28.24
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/Instruct_GPT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 39.33
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/Instruct_GPT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 26.84
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/Instruct_GPT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 39.72
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/Instruct_GPT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 54.3
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/Instruct_GPT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 0.3
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/Instruct_GPT
      name: Open LLM Leaderboard
---

This model is a finetuned version of ```gpt2-medium``` using ```databricks/databricks-dolly-15k dataset```

## Model description

GPT-2 is a transformers model pre-trained on a very large corpus of English data in a self-supervised fashion. This
means it was pre-trained on the raw texts only, with no humans labeling them in any way (which is why it can use lots
of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely,
it was trained to guess the next word in sentences.

More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence,
shifting one token (word or piece of word) to the right. The model uses a mask mechanism to make sure the
predictions for the token `i` only use the inputs from `1` to `i` but not the future tokens.

This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks. The model is best at what it was trained for, however, which is generating texts from a
prompt.

### To use this model

```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> model_name = "Sharathhebbar24/Instruct_GPT"
>>> model = AutoModelForCausalLM.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2-medium")
>>> def generate_text(prompt):
>>>  inputs = tokenizer.encode(prompt, return_tensors='pt')
>>>  outputs = mod1.generate(inputs, max_length=64, pad_token_id=tokenizer.eos_token_id)
>>>  generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
>>>  return generated[:generated.rfind(".")+1]

>>> generate_text("Should I Invest in stocks")

Should I Invest in stocks? Investing in stocks is a great way to diversify your portfolio.  You can invest in stocks based on the market's performance, or you can invest in stocks based on the company's performance.
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Sharathhebbar24__Instruct_GPT)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |31.46|
|AI2 Reasoning Challenge (25-Shot)|28.24|
|HellaSwag (10-Shot)              |39.33|
|MMLU (5-Shot)                    |26.84|
|TruthfulQA (0-shot)              |39.72|
|Winogrande (5-shot)              |54.30|
|GSM8k (5-shot)                   | 0.30|