Shariar433 commited on
Commit
b78e26e
1 Parent(s): d619290

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -14
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.9347574101672462
28
  - name: Recall
29
  type: recall
30
- value: 0.9500168293503871
31
  - name: F1
32
  type: f1
33
- value: 0.9423253484684083
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9863719314770119
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.0596
47
- - Precision: 0.9348
48
- - Recall: 0.9500
49
- - F1: 0.9423
50
- - Accuracy: 0.9864
51
 
52
  ## Model description
53
 
@@ -78,14 +78,14 @@ The following hyperparameters were used during training:
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | 0.0901 | 1.0 | 1756 | 0.0692 | 0.9075 | 0.9327 | 0.9199 | 0.9810 |
82
- | 0.0352 | 2.0 | 3512 | 0.0608 | 0.9299 | 0.9490 | 0.9394 | 0.9860 |
83
- | 0.0189 | 3.0 | 5268 | 0.0596 | 0.9348 | 0.9500 | 0.9423 | 0.9864 |
84
 
85
 
86
  ### Framework versions
87
 
88
- - Transformers 4.29.1
89
- - Pytorch 2.0.0+cu118
90
  - Datasets 2.12.0
91
  - Tokenizers 0.13.3
 
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.9377799900447984
28
  - name: Recall
29
  type: recall
30
+ value: 0.9511948838774823
31
  - name: F1
32
  type: f1
33
+ value: 0.9444398028239619
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.9862689115205746
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.0610
47
+ - Precision: 0.9378
48
+ - Recall: 0.9512
49
+ - F1: 0.9444
50
+ - Accuracy: 0.9863
51
 
52
  ## Model description
53
 
 
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.0874 | 1.0 | 1756 | 0.0679 | 0.9211 | 0.9329 | 0.9269 | 0.9822 |
82
+ | 0.0329 | 2.0 | 3512 | 0.0620 | 0.9372 | 0.9520 | 0.9446 | 0.9868 |
83
+ | 0.0184 | 3.0 | 5268 | 0.0610 | 0.9378 | 0.9512 | 0.9444 | 0.9863 |
84
 
85
 
86
  ### Framework versions
87
 
88
+ - Transformers 4.29.2
89
+ - Pytorch 2.0.1+cu118
90
  - Datasets 2.12.0
91
  - Tokenizers 0.13.3