File size: 4,417 Bytes
cfab59e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: nyankole_wav2vec2-runpod-unf-large
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mbalireshawal-makerere-university/huggingface/runs/1l4ekc0h)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mbalireshawal-makerere-university/huggingface/runs/1l4ekc0h)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mbalireshawal-makerere-university/huggingface/runs/1l4ekc0h)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mbalireshawal-makerere-university/huggingface/runs/1l4ekc0h)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mbalireshawal-makerere-university/huggingface/runs/1l4ekc0h)
# nyankole_wav2vec2-runpod-unf-large
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 830.9091
- Wer: 0.6101
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 7399.694 | 1.0 | 53 | 3616.8877 | 1.0 |
| 7452.8927 | 2.0 | 106 | 3606.0696 | 1.0 |
| 7321.2547 | 3.0 | 159 | 3614.7188 | 1.0 |
| 7283.513 | 4.0 | 212 | 3665.7957 | 1.0 |
| 7260.0973 | 5.0 | 265 | 3556.3738 | 1.0 |
| 7184.4652 | 6.0 | 318 | 3440.7732 | 1.0 |
| 6526.0413 | 7.0 | 371 | 2693.0374 | 1.0 |
| 5025.6185 | 8.0 | 424 | 1748.6117 | 0.9985 |
| 3761.0044 | 9.0 | 477 | 1390.0330 | 0.8946 |
| 3265.3567 | 10.0 | 530 | 1185.7458 | 0.8108 |
| 2818.3317 | 11.0 | 583 | 1076.5151 | 0.7582 |
| 2666.5274 | 12.0 | 636 | 1016.1800 | 0.7206 |
| 2484.5062 | 13.0 | 689 | 1017.9598 | 0.7026 |
| 2363.0265 | 14.0 | 742 | 935.6443 | 0.6879 |
| 2215.8507 | 15.0 | 795 | 926.4963 | 0.6670 |
| 2169.1753 | 16.0 | 848 | 892.7558 | 0.6608 |
| 2054.9318 | 17.0 | 901 | 885.1797 | 0.6461 |
| 2001.906 | 18.0 | 954 | 869.5634 | 0.6369 |
| 2011.2323 | 19.0 | 1007 | 857.0482 | 0.6317 |
| 1900.8241 | 20.0 | 1060 | 855.6694 | 0.625 |
| 1869.7319 | 21.0 | 1113 | 842.1160 | 0.6296 |
| 1809.5601 | 22.0 | 1166 | 838.9195 | 0.6219 |
| 1828.7354 | 23.0 | 1219 | 830.1293 | 0.6198 |
| 1804.8732 | 24.0 | 1272 | 835.9683 | 0.6173 |
| 1775.2409 | 25.0 | 1325 | 831.1539 | 0.6103 |
| 1805.726 | 26.0 | 1378 | 831.0961 | 0.6157 |
| 1738.365 | 27.0 | 1431 | 831.4120 | 0.6126 |
| 1802.3348 | 28.0 | 1484 | 831.5934 | 0.6113 |
| 1806.6047 | 29.0 | 1537 | 831.4467 | 0.6101 |
| 1788.635 | 30.0 | 1590 | 830.9091 | 0.6101 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|