End of training
Browse files
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/wav2vec2-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- wer
|
8 |
+
model-index:
|
9 |
+
- name: nyankole_wav2vec2
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# nyankole_wav2vec2
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 2.8615
|
21 |
+
- Wer: 1.0
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0003
|
41 |
+
- train_batch_size: 4
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 2
|
45 |
+
- total_train_batch_size: 8
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_steps: 150
|
49 |
+
- num_epochs: 30
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
55 |
+
|:-------------:|:-------:|:----:|:---------------:|:---:|
|
56 |
+
| 2.9097 | 0.9976 | 210 | 2.9031 | 1.0 |
|
57 |
+
| 2.8649 | 2.0 | 421 | 2.8534 | 1.0 |
|
58 |
+
| 2.8545 | 2.9976 | 631 | 2.8537 | 1.0 |
|
59 |
+
| 2.8465 | 4.0 | 842 | 2.8554 | 1.0 |
|
60 |
+
| 2.8509 | 4.9976 | 1052 | 2.8629 | 1.0 |
|
61 |
+
| 2.8491 | 6.0 | 1263 | 2.8828 | 1.0 |
|
62 |
+
| 2.8463 | 6.9976 | 1473 | 2.8570 | 1.0 |
|
63 |
+
| 2.8477 | 8.0 | 1684 | 2.8675 | 1.0 |
|
64 |
+
| 2.8478 | 8.9976 | 1894 | 2.8605 | 1.0 |
|
65 |
+
| 2.8411 | 10.0 | 2105 | 2.8593 | 1.0 |
|
66 |
+
| 2.8493 | 10.9976 | 2315 | 2.8573 | 1.0 |
|
67 |
+
| 2.8478 | 12.0 | 2526 | 2.8564 | 1.0 |
|
68 |
+
| 2.8823 | 12.9976 | 2736 | 2.8538 | 1.0 |
|
69 |
+
| 2.8413 | 14.0 | 2947 | 2.8534 | 1.0 |
|
70 |
+
| 2.8497 | 14.9976 | 3157 | 2.8487 | 1.0 |
|
71 |
+
| 2.8439 | 16.0 | 3368 | 2.8642 | 1.0 |
|
72 |
+
| 2.8442 | 16.9976 | 3578 | 2.8527 | 1.0 |
|
73 |
+
| 2.8425 | 18.0 | 3789 | 2.8611 | 1.0 |
|
74 |
+
| 2.841 | 18.9976 | 3999 | 2.8617 | 1.0 |
|
75 |
+
| 2.8426 | 20.0 | 4210 | 2.8563 | 1.0 |
|
76 |
+
| 2.8454 | 20.9976 | 4420 | 2.8527 | 1.0 |
|
77 |
+
| 2.8396 | 22.0 | 4631 | 2.8568 | 1.0 |
|
78 |
+
| 2.8449 | 22.9976 | 4841 | 2.8503 | 1.0 |
|
79 |
+
| 2.8424 | 24.0 | 5052 | 2.8596 | 1.0 |
|
80 |
+
| 2.8438 | 24.9976 | 5262 | 2.8624 | 1.0 |
|
81 |
+
| 2.8414 | 26.0 | 5473 | 2.8606 | 1.0 |
|
82 |
+
| 2.8387 | 26.9976 | 5683 | 2.8635 | 1.0 |
|
83 |
+
| 2.8408 | 28.0 | 5894 | 2.8569 | 1.0 |
|
84 |
+
| 2.8729 | 28.9976 | 6104 | 2.8640 | 1.0 |
|
85 |
+
| 2.8417 | 29.9287 | 6300 | 2.8615 | 1.0 |
|
86 |
+
|
87 |
+
|
88 |
+
### Framework versions
|
89 |
+
|
90 |
+
- Transformers 4.42.4
|
91 |
+
- Pytorch 2.1.0+cu118
|
92 |
+
- Datasets 2.20.0
|
93 |
+
- Tokenizers 0.19.1
|