--- library_name: transformers license: apache-2.0 --- # Model card for Mistral-7B-Instruct-Ukrainian Mistral-7B-UK is a Large Language Model finetuned for the Ukrainian language. Mistral-7B-UK is trained using the following formula: 1. Initial finetuning of [Mistral-7B-v0.2](mistralai/Mistral-7B-Instruct-v0.2) using structured and unstructured datasets. 2. SLERP merge of the finetuned model with a model that performs better than `Mistral-7B-v0.2` on `OpenLLM` benchmark: [NeuralTrix-7B](https://huggingface.co/CultriX/NeuralTrix-7B-v1) 3. DPO of the final model. ## Instruction format In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. E.g. ``` text = "[INST]Відповідайте лише буквою правильної відповіді: Елементи експресіонізму наявні у творі: A. «Камінний хрест», B. «Інститутка», C. «Маруся», D. «Людина»[/INST]" ``` This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method: ## Model Architecture This instruction model is based on Mistral-7B-v0.2, a transformer model with the following architecture choices: - Grouped-Query Attention - Sliding-Window Attention - Byte-fallback BPE tokenizer ## Datasets - Structured - [UA-SQUAD](https://huggingface.co/datasets/FIdo-AI/ua-squad/resolve/main/ua_squad_dataset.json) - [Ukrainian StackExchange](https://huggingface.co/datasets/zeusfsx/ukrainian-stackexchange) - [UAlpaca Dataset](https://github.com/robinhad/kruk/blob/main/data/cc-by-nc/alpaca_data_translated.json) - [Ukrainian Subset from Belebele Dataset](https://github.com/facebookresearch/belebele) - [Ukrainian Subset from XQA](https://github.com/thunlp/XQA) - [ZNO Dataset provided in UNLP 2024 shared task](https://github.com/unlp-workshop/unlp-2024-shared-task/blob/main/data/zno.train.jsonl) ## Datasets - Unstructured - Ukrainian Wiki ## Datasets - DPO - Ukrainian translation of [distilabel-indel-orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs) ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "SherlockAssistant/Mistral-7B-Instruct-Ukrainian" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.bfloat16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## Citation If you are using this model in your research and publishing a paper, please help by citing our paper: **BIB** @inproceedings{syvokon-etal-2024-shared, title = "Fine-tuning and Retrieval Augmented Generation for Question Answering using affordable Large Language Models", author = "Boros, Tiberiu and Chivereanu, Radu and Dumitrescu, Stefan Daniel and Purcaru, Octavian", booktitle = "Proceedings of the Third Ukrainian Natural Language Processing Workshop, LREC-COLING", month = may, year = "2024", address = "Torino, Italy", publisher = "European Language Resources Association", } **APA** Boros, T., Chivereanu, R., Dumitrescu, S., & Purcaru, O. (2024). Fine-tuning and Retrieval Augmented Generation for Question Answering using affordable Large Language Models. In Proceedings of the Third Ukrainian Natural Language Processing Workshop, LREC-COLING. European Language Resources Association. **MLA** Boros, Tiberiu, Radu, Chivereanu, Stefan Daniel, Dumitrescu, Octavian, Purcaru. "Fine-tuning and Retrieval Augmented Generation for Question Answering using affordable Large Language Models." Proceedings of the Third Ukrainian Natural Language Processing Workshop, LREC-COLING. European Language Resources Association, 2024. **Chicago** Boros, Tiberiu, Radu, Chivereanu, Stefan Daniel, Dumitrescu, and Octavian, Purcaru. "Fine-tuning and Retrieval Augmented Generation for Question Answering using affordable Large Language Models." . In Proceedings of the Third Ukrainian Natural Language Processing Workshop, LREC-COLING. European Language Resources Association, 2024.