File size: 2,449 Bytes
86174bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
base_model: yihongLiu/furina
tags:
- generated_from_trainer
model-index:
- name: furina_ary_loss_0.0001
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# furina_ary_loss_0.0001
This model is a fine-tuned version of [yihongLiu/furina](https://huggingface.co/yihongLiu/furina) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0489
- Spearman Corr: nan
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Spearman Corr |
|:-------------:|:-----:|:----:|:---------------:|:-------------:|
| No log | 0.9 | 200 | 0.0478 | nan |
| No log | 1.8 | 400 | 0.0472 | nan |
| 0.0489 | 2.7 | 600 | 0.0509 | 0.0080 |
| 0.0489 | 3.6 | 800 | 0.0476 | nan |
| 0.0491 | 4.5 | 1000 | 0.0477 | nan |
| 0.0491 | 5.41 | 1200 | 0.0474 | nan |
| 0.0488 | 6.31 | 1400 | 0.0470 | nan |
| 0.0488 | 7.21 | 1600 | 0.0467 | nan |
| 0.0488 | 8.11 | 1800 | 0.0496 | nan |
| 0.0488 | 9.01 | 2000 | 0.0472 | nan |
| 0.0488 | 9.91 | 2200 | 0.0487 | 0.0217 |
| 0.0486 | 10.81 | 2400 | 0.0472 | nan |
| 0.0486 | 11.71 | 2600 | 0.0484 | nan |
| 0.0484 | 12.61 | 2800 | 0.0490 | nan |
| 0.0484 | 13.51 | 3000 | 0.0469 | nan |
| 0.0485 | 14.41 | 3200 | 0.0489 | nan |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
|