File size: 2,248 Bytes
d26f5f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
base_model: yihongLiu/furina
tags:
- generated_from_trainer
model-index:
- name: furina_ary_loss_5e-06
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# furina_ary_loss_5e-06
This model is a fine-tuned version of [yihongLiu/furina](https://huggingface.co/yihongLiu/furina) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0226
- Spearman Corr: 0.7565
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Spearman Corr |
|:-------------:|:-----:|:----:|:---------------:|:-------------:|
| No log | 0.9 | 200 | 0.0228 | 0.7563 |
| No log | 1.8 | 400 | 0.0235 | 0.7560 |
| 0.0036 | 2.7 | 600 | 0.0225 | 0.7529 |
| 0.0036 | 3.6 | 800 | 0.0230 | 0.7605 |
| 0.0035 | 4.5 | 1000 | 0.0219 | 0.7584 |
| 0.0035 | 5.41 | 1200 | 0.0227 | 0.7586 |
| 0.0034 | 6.31 | 1400 | 0.0221 | 0.7607 |
| 0.0034 | 7.21 | 1600 | 0.0225 | 0.7612 |
| 0.0038 | 8.11 | 1800 | 0.0219 | 0.7575 |
| 0.0038 | 9.01 | 2000 | 0.0224 | 0.7576 |
| 0.0038 | 9.91 | 2200 | 0.0220 | 0.7598 |
| 0.0043 | 10.81 | 2400 | 0.0224 | 0.7601 |
| 0.0043 | 11.71 | 2600 | 0.0226 | 0.7565 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
|