File size: 2,347 Bytes
1a76549 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
base_model: yihongLiu/furina
tags:
- generated_from_trainer
model-index:
- name: furina_seed42_eng_amh_esp_basic_5e-06
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# furina_seed42_eng_amh_esp_basic_5e-06
This model is a fine-tuned version of [yihongLiu/furina](https://huggingface.co/yihongLiu/furina) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0213
- Spearman Corr: 0.7510
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Spearman Corr |
|:-------------:|:-----:|:----:|:---------------:|:-------------:|
| No log | 1.59 | 200 | 0.0439 | 0.1550 |
| 0.1335 | 3.17 | 400 | 0.0317 | 0.6373 |
| 0.0485 | 4.76 | 600 | 0.0210 | 0.6957 |
| 0.0295 | 6.35 | 800 | 0.0249 | 0.7234 |
| 0.0295 | 7.94 | 1000 | 0.0196 | 0.7301 |
| 0.0243 | 9.52 | 1200 | 0.0195 | 0.7405 |
| 0.0221 | 11.11 | 1400 | 0.0214 | 0.7448 |
| 0.02 | 12.7 | 1600 | 0.0237 | 0.7426 |
| 0.0187 | 14.29 | 1800 | 0.0198 | 0.7470 |
| 0.0187 | 15.87 | 2000 | 0.0208 | 0.7501 |
| 0.0176 | 17.46 | 2200 | 0.0240 | 0.7495 |
| 0.0163 | 19.05 | 2400 | 0.0212 | 0.7518 |
| 0.0158 | 20.63 | 2600 | 0.0237 | 0.7475 |
| 0.0154 | 22.22 | 2800 | 0.0213 | 0.7510 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
|