File size: 2,350 Bytes
27fb92e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
base_model: yihongLiu/furina
tags:
- generated_from_trainer
model-index:
- name: furina_seed42_eng_esp_hau_basic_0.0001
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# furina_seed42_eng_esp_hau_basic_0.0001
This model is a fine-tuned version of [yihongLiu/furina](https://huggingface.co/yihongLiu/furina) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0312
- Spearman Corr: 0.7194
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Spearman Corr |
|:-------------:|:-----:|:----:|:---------------:|:-------------:|
| No log | 1.45 | 200 | 0.0282 | 0.6099 |
| 0.0652 | 2.91 | 400 | 0.0303 | 0.6702 |
| 0.0263 | 4.36 | 600 | 0.0301 | 0.7175 |
| 0.0263 | 5.82 | 800 | 0.0333 | 0.7147 |
| 0.0178 | 7.27 | 1000 | 0.0346 | 0.7279 |
| 0.0123 | 8.73 | 1200 | 0.0274 | 0.7307 |
| 0.0089 | 10.18 | 1400 | 0.0290 | 0.7331 |
| 0.0089 | 11.64 | 1600 | 0.0302 | 0.7243 |
| 0.0064 | 13.09 | 1800 | 0.0292 | 0.7243 |
| 0.0052 | 14.55 | 2000 | 0.0297 | 0.7253 |
| 0.0044 | 16.0 | 2200 | 0.0335 | 0.7158 |
| 0.0044 | 17.45 | 2400 | 0.0313 | 0.7319 |
| 0.0038 | 18.91 | 2600 | 0.0289 | 0.7169 |
| 0.0032 | 20.36 | 2800 | 0.0312 | 0.7194 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
|