File size: 2,484 Bytes
7c5dd20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
base_model: yihongLiu/furina
tags:
- generated_from_trainer
model-index:
- name: furina_seed42_eng_esp_kin_cross_0.0001
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# furina_seed42_eng_esp_kin_cross_0.0001

This model is a fine-tuned version of [yihongLiu/furina](https://huggingface.co/yihongLiu/furina) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0323
- Spearman Corr: 0.6759

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Spearman Corr |
|:-------------:|:-----:|:----:|:---------------:|:-------------:|
| No log        | 0.54  | 200  | 0.0358          | 0.5989        |
| No log        | 1.09  | 400  | 0.0285          | 0.6016        |
| No log        | 1.63  | 600  | 0.0403          | -0.0786       |
| 0.046         | 2.18  | 800  | 0.0386          | nan           |
| 0.046         | 2.72  | 1000 | 0.0383          | nan           |
| 0.046         | 3.27  | 1200 | 0.0392          | 0.4628        |
| 0.046         | 3.81  | 1400 | 0.0601          | 0.5371        |
| 0.0469        | 4.35  | 1600 | 0.0260          | 0.6378        |
| 0.0469        | 4.9   | 1800 | 0.0273          | 0.6483        |
| 0.0469        | 5.44  | 2000 | 0.0278          | 0.6641        |
| 0.0469        | 5.99  | 2200 | 0.0336          | 0.6578        |
| 0.0219        | 6.53  | 2400 | 0.0314          | 0.6684        |
| 0.0219        | 7.07  | 2600 | 0.0335          | 0.6719        |
| 0.0219        | 7.62  | 2800 | 0.0277          | 0.6742        |
| 0.0128        | 8.16  | 3000 | 0.0377          | 0.6741        |
| 0.0128        | 8.71  | 3200 | 0.0323          | 0.6759        |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2