File size: 1,708 Bytes
29b5b69
 
 
 
 
a8b8279
 
29b5b69
 
 
 
 
 
 
 
 
 
 
 
a8b8279
 
 
 
 
 
29b5b69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8b8279
 
29b5b69
 
 
 
 
 
 
a8b8279
 
 
 
 
29b5b69
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
metrics:
- rouge
base_model: google-t5/t5-small
model-index:
- name: t5-small-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-v2

This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2734
- Rouge1: 25.8039
- Rouge2: 7.8029
- Rougel: 17.9541
- Rougelsum: 17.9584

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 7
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 2.577         | 1.49  | 250  | 2.2480          | 26.1891 | 7.8964 | 17.9400 | 17.9370   |
| 2.5599        | 2.98  | 500  | 2.2617          | 26.2088 | 7.9532 | 18.3182 | 18.3326   |
| 2.5877        | 4.46  | 750  | 2.2734          | 25.8039 | 7.8029 | 17.9541 | 17.9584   |


### Framework versions

- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2