ShynBui commited on
Commit
1a78e63
1 Parent(s): d5c3e24

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 258.22 +/- 15.47
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7812e78c2d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7812e78c2dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7812e78c2e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7812e78c2ef0>", "_build": "<function ActorCriticPolicy._build at 0x7812e78c2f80>", "forward": "<function ActorCriticPolicy.forward at 0x7812e78c3010>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7812e78c30a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7812e78c3130>", "_predict": "<function ActorCriticPolicy._predict at 0x7812e78c31c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7812e78c3250>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7812e78c32e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7812e78c3370>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7812e7a5ba40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709501161379160903, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADbsr1LenI/Vm46vX1N3r7MTlC8TZ2qPQAAAAAAAAAAWlWfvY8WXbqruyu6xF3utNx4CbrQSUY5AACAPwAAAAAAoKC9j/Yfuoo+PDwC3LC8LhNGOjfQmr0AAAAAAACAPyWslb612oU/iqNNvlBT4L5/B52+hHGCPQAAAAAAAAAAZnv8vGh4oj8ausW9l4AAvxdT0rzK0wS8AAAAAAAAAABAeKq9PcolOEq5iDl1CMU07pn7O1qapbgAAAAAAACAPxqJvb3zO0E/UHltvE4ey75Rs0i9dRG3PAAAAAAAAAAAhi4uvla+OD/9WAg+DY/NvubxZr21DyI+AAAAAAAAAADNwKO8hVr5u4TpAj4M0J88Lf0IvbYAZDsAAIA/AACAP7M0fT0otqQ/rdIRPsuO+75CkOY9KNlkvAAAAAAAAAAAGhk1va7FqLo9/kkziyNlriKNkbqbBMOzAACAPwAAgD+ak2o9cQ17uc2iQbembo6y+Ag5u1h5ZTYAAIA/AACAP5oDjbzI/sE+AkyEvgMumL4Efva984d2vQAAAAAAAAAAAILrvcwmRD8WjPq8RAezvkIgoL0LKIk9AAAAAAAAAAAzmYO8EtmKPGHrMjvKpjq+w/ZdPc6127wAAAAAAAAAAABb8jyfNyE+hV/6vdfbUb6WZyG92iODOQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9iYXO4XoGMAWyUTRgBjAF0lEdAlAebNwBHTnV9lChoBkdAZlF4N7SiNGgHTegDaAhHQJQNoFV1fVt1fZQoaAZHQHMBm1MM7U5oB01PAmgIR0CUIF0ygwoLdX2UKGgGR0BuWit9x6v8aAdNTgFoCEdAlCDGzWwu/XV9lChoBkdAcP70+kgwGmgHTSwBaAhHQJQhTWQOnVJ1fZQoaAZHQHHuzBInSfFoB00dAWgIR0CUIfQQL/jsdX2UKGgGR0ByNz+IdlunaAdNKQFoCEdAlCKxuXNTtXV9lChoBkdAY4WryUcGT2gHTegDaAhHQJQjSZ7Xxvx1fZQoaAZHQHCyZZfUnXxoB00cAWgIR0CUI60oBq9HdX2UKGgGR0BxQVyIYWLxaAdNNwFoCEdAlCTPtY0VJ3V9lChoBkdAcfNVx0dRzmgHTVIBaAhHQJQk7T2FnI11fZQoaAZHQHBSy9/SYw9oB01UAmgIR0CUJmla8pTddX2UKGgGR0ByFntAs053aAdN/gJoCEdAlCasa4tpVXV9lChoBkdAbiwjopx3mmgHTaQBaAhHQJQoHHwPRRd1fZQoaAZHQG5+cdxQzk9oB00SAWgIR0CUKLtJnQIEdX2UKGgGR0Bw9rKV6eGxaAdNDgJoCEdAlCmD4pMHr3V9lChoBkdAcHexbB42TGgHS/5oCEdAlCmbtVrAQHV9lChoBkdAbEru0kWykmgHTdACaAhHQJQp4S+QEIR1fZQoaAZHQHNCZxzaK1poB0v/aAhHQJQp6Ezwc5t1fZQoaAZHQHFW2NzbN8poB00jAWgIR0CULAvr4WUKdX2UKGgGR0BxNX3nIQvpaAdNKAFoCEdAlC0nXd0q6XV9lChoBkdAbWua5wwTNGgHTTEBaAhHQJQuTOIInjR1fZQoaAZHQHK8rSiM5wRoB02hAmgIR0CUMANY8uBddX2UKGgGR0Bs5eogmqo7aAdNQgFoCEdAlDEXggow23V9lChoBkdAcDo850bLlmgHTYEBaAhHQJQy/Dk2gnN1fZQoaAZHQHD56Ezwc5toB00EAWgIR0CUMzEVnEl3dX2UKGgGR0BtfAqRU3n7aAdNDgFoCEdAlDW/+85CGHV9lChoBkdAcXPg6EJ0GWgHTQwBaAhHQJQ1y27Wd3B1fZQoaAZHQGztDHfdhy9oB007AWgIR0CUNo3JxNqQdX2UKGgGR0Bw/+7EpAlfaAdNkwFoCEdAlDcuDrZ8KHV9lChoBkdActlpG4I8hmgHTSwBaAhHQJQ3ZS4vvjR1fZQoaAZHQGxdDHXEqDtoB03hAWgIR0CUOGtjTa0ydX2UKGgGR0BwHIe8wpOOaAdNJQFoCEdAlDtEGmk30nV9lChoBkdAcjz7MgU1ymgHTWABaAhHQJQ7zEVFhG91fZQoaAZHQHMz+XVsk6doB01MAWgIR0CUO+LjPv8ZdX2UKGgGR0Bw4uGfwqiHaAdNFwFoCEdAlDz3eSB9TnV9lChoBkdAcTMF+NLlFWgHTS4CaAhHQJQ9UUqQRwt1fZQoaAZHQHFe6wt8NQVoB00ZAWgIR0CUPlRGtp22dX2UKGgGR0ByARCHARChaAdNHwFoCEdAlD5utW+49XV9lChoBkdAclH8eS0SiGgHTV0BaAhHQJQ+sHryDqZ1fZQoaAZHQHLJrTtsvZhoB00VAWgIR0CUQKkVvddndX2UKGgGR0BytWpcX3xnaAdNFgFoCEdAlEFr2QGOdXV9lChoBkdAcaNru6VdHGgHTVYCaAhHQJRCIIa99MN1fZQoaAZHQHH27uDzyz5oB0v2aAhHQJREe1x82Jl1fZQoaAZHQG3Kp7CzkZJoB02LAWgIR0CURZBPsRg7dX2UKGgGR0Bx2O7EpAlfaAdNNQFoCEdAlEZ642CNCXV9lChoBkdAbun0Zm7J4mgHTc0BaAhHQJRGyLm6oVF1fZQoaAZHQHMn4bjtG/hoB02MAWgIR0CURv5tWMjvdX2UKGgGR0BxB3eP7vXtaAdL+WgIR0CUR6ZIQOFydX2UKGgGR0BxBPnxJ/XoaAdNLQFoCEdAlEfGFajesXV9lChoBkdAWvoDJU5uImgHTegDaAhHQJRZcr08NhF1fZQoaAZHQHFaPw7T2FpoB0vsaAhHQJRai8SPEKp1fZQoaAZHQHLEpgPVd5ZoB00lAmgIR0CUWxIFNcnmdX2UKGgGR0BwmOVW0Z3taAdNZgFoCEdAlFtJJPIn0HV9lChoBkdAcEIdPtUn5WgHTU8BaAhHQJRbdx+8Xep1fZQoaAZHQG28YgaFVT9oB00kAWgIR0CUXYHryDqXdX2UKGgGR0Bw3MMa0hNeaAdNmwFoCEdAlF69M0xdp3V9lChoBkdAcLCD/EOy3WgHTTQBaAhHQJRfGaa1Cw91fZQoaAZHQG3d46nzg/FoB00IAWgIR0CUX/rnkkrxdX2UKGgGR0ByLUPbwjMWaAdNLQFoCEdAlGK7ns9jgHV9lChoBkdAcbQ6XBxgiWgHTR8BaAhHQJRjmWLP2PF1fZQoaAZHQG805Gz8gp1oB00KAWgIR0CUY8ON5t3wdX2UKGgGR0BwABUJfICEaAdNDwFoCEdAlGS6JIlMRHV9lChoBkdAcUVVfu1F6WgHS/ZoCEdAlGUGTX8O1HV9lChoBkdAco8OuJUHZGgHTVkBaAhHQJRmGPjn3cp1fZQoaAZHQHBP44VARkFoB00IAWgIR0CUZlKPn0TUdX2UKGgGR0BykwWfseGPaAdNxQJoCEdAlGffqTr3TXV9lChoBkdAcpuXkHUtqmgHTUYBaAhHQJRoIkiUxEh1fZQoaAZHQHD39tl7MPloB01CAWgIR0CUaG0o0ALidX2UKGgGR0Bw1W3pfQa8aAdNNQFoCEdAlGmRC+lCTnV9lChoBkdAb/Br2xptamgHTQoBaAhHQJRqCd3B55Z1fZQoaAZHQHFVStNi6QNoB00uAWgIR0CUajjABT4tdX2UKGgGR0Bym90Syt3faAdN0AFoCEdAlGqOjEehf3V9lChoBkdAclpt1IRRM2gHTUoBaAhHQJRrV/lQuVZ1fZQoaAZHQHD5Fzp5eJJoB00EAWgIR0CUbE/keZG8dX2UKGgGR0BvI+LNwBHTaAdNCQFoCEdAlGybnoxHoXV9lChoBkdAcKIv2GqPwWgHTRIBaAhHQJRtg2/BWPt1fZQoaAZHQG8icYZVGTdoB01YAWgIR0CUbo9y925hdX2UKGgGR0BvjFoN/e+FaAdNEAFoCEdAlG8T4xk/bHV9lChoBkdAcAHTNMXaamgHTUsBaAhHQJRvr5ftx+91fZQoaAZHQHEvxWHUMG5oB01CAWgIR0CUcIOZb6gvdX2UKGgGR0Bs2HmzSkTIaAdNJAFoCEdAlHFtSEUTMHV9lChoBkdAcg1XOnl4kmgHTR8BaAhHQJRx0pqh11Z1fZQoaAZHQG9rhnrY5DJoB00IAWgIR0CUckk5p8F7dX2UKGgGR0Bw/6NfgJkYaAdL/WgIR0CUcmz5GjKxdX2UKGgGR0BwzSqEOAiFaAdNHwFoCEdAlHO3NorWiHV9lChoBkdAcUxWbwz+FWgHTSUBaAhHQJR0RZyMkyF1fZQoaAZHQHFFQYtQKrtoB00MAWgIR0CUdEi704BFdX2UKGgGR0BwcLOQhfShaAdNdAFoCEdAlHRJ17pmmXV9lChoBkdAcLN+PRzBAWgHTTABaAhHQJR2fueBg/l1fZQoaAZHQHHlP20zCUJoB00DAWgIR0CUduzpX6qLdX2UKGgGR0ByMWvA44p+aAdNDwFoCEdAlHfV6/qPfnV9lChoBkdAcUqpF1B+nmgHS/5oCEdAlHmtNzr/sHV9lChoBkdAcgdvboKUmmgHTX8BaAhHQJR6Rx5s0pF1fZQoaAZHQHJNGkSElE9oB004AWgIR0CUevkzXSSedX2UKGgGR0BhX8p/gBLgaAdN6ANoCEdAlHtApjMFEHV9lChoBkdAclAJJ5E+gWgHTcIBaAhHQJR7a+wkgOl1fZQoaAZHQHCtBxYJVsFoB01gAWgIR0CUe4n2ZiNLdX2UKGgGR0BwWtznzQNTaAdNJwFoCEdAlHwXE61b7nV9lChoBkdAbbCPcSGrS2gHS/9oCEdAlHw4kiUxEnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ed853accb53e238695a5d20dbe620477323adafcf8e53742aeef512df943e17
3
+ size 148076
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7812e78c2d40>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7812e78c2dd0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7812e78c2e60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7812e78c2ef0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7812e78c2f80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7812e78c3010>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7812e78c30a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7812e78c3130>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7812e78c31c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7812e78c3250>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7812e78c32e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7812e78c3370>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7812e7a5ba40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1709501161379160903,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADbsr1LenI/Vm46vX1N3r7MTlC8TZ2qPQAAAAAAAAAAWlWfvY8WXbqruyu6xF3utNx4CbrQSUY5AACAPwAAAAAAoKC9j/Yfuoo+PDwC3LC8LhNGOjfQmr0AAAAAAACAPyWslb612oU/iqNNvlBT4L5/B52+hHGCPQAAAAAAAAAAZnv8vGh4oj8ausW9l4AAvxdT0rzK0wS8AAAAAAAAAABAeKq9PcolOEq5iDl1CMU07pn7O1qapbgAAAAAAACAPxqJvb3zO0E/UHltvE4ey75Rs0i9dRG3PAAAAAAAAAAAhi4uvla+OD/9WAg+DY/NvubxZr21DyI+AAAAAAAAAADNwKO8hVr5u4TpAj4M0J88Lf0IvbYAZDsAAIA/AACAP7M0fT0otqQ/rdIRPsuO+75CkOY9KNlkvAAAAAAAAAAAGhk1va7FqLo9/kkziyNlriKNkbqbBMOzAACAPwAAgD+ak2o9cQ17uc2iQbembo6y+Ag5u1h5ZTYAAIA/AACAP5oDjbzI/sE+AkyEvgMumL4Efva984d2vQAAAAAAAAAAAILrvcwmRD8WjPq8RAezvkIgoL0LKIk9AAAAAAAAAAAzmYO8EtmKPGHrMjvKpjq+w/ZdPc6127wAAAAAAAAAAABb8jyfNyE+hV/6vdfbUb6WZyG92iODOQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9iYXO4XoGMAWyUTRgBjAF0lEdAlAebNwBHTnV9lChoBkdAZlF4N7SiNGgHTegDaAhHQJQNoFV1fVt1fZQoaAZHQHMBm1MM7U5oB01PAmgIR0CUIF0ygwoLdX2UKGgGR0BuWit9x6v8aAdNTgFoCEdAlCDGzWwu/XV9lChoBkdAcP70+kgwGmgHTSwBaAhHQJQhTWQOnVJ1fZQoaAZHQHHuzBInSfFoB00dAWgIR0CUIfQQL/jsdX2UKGgGR0ByNz+IdlunaAdNKQFoCEdAlCKxuXNTtXV9lChoBkdAY4WryUcGT2gHTegDaAhHQJQjSZ7Xxvx1fZQoaAZHQHCyZZfUnXxoB00cAWgIR0CUI60oBq9HdX2UKGgGR0BxQVyIYWLxaAdNNwFoCEdAlCTPtY0VJ3V9lChoBkdAcfNVx0dRzmgHTVIBaAhHQJQk7T2FnI11fZQoaAZHQHBSy9/SYw9oB01UAmgIR0CUJmla8pTddX2UKGgGR0ByFntAs053aAdN/gJoCEdAlCasa4tpVXV9lChoBkdAbiwjopx3mmgHTaQBaAhHQJQoHHwPRRd1fZQoaAZHQG5+cdxQzk9oB00SAWgIR0CUKLtJnQIEdX2UKGgGR0Bw9rKV6eGxaAdNDgJoCEdAlCmD4pMHr3V9lChoBkdAcHexbB42TGgHS/5oCEdAlCmbtVrAQHV9lChoBkdAbEru0kWykmgHTdACaAhHQJQp4S+QEIR1fZQoaAZHQHNCZxzaK1poB0v/aAhHQJQp6Ezwc5t1fZQoaAZHQHFW2NzbN8poB00jAWgIR0CULAvr4WUKdX2UKGgGR0BxNX3nIQvpaAdNKAFoCEdAlC0nXd0q6XV9lChoBkdAbWua5wwTNGgHTTEBaAhHQJQuTOIInjR1fZQoaAZHQHK8rSiM5wRoB02hAmgIR0CUMANY8uBddX2UKGgGR0Bs5eogmqo7aAdNQgFoCEdAlDEXggow23V9lChoBkdAcDo850bLlmgHTYEBaAhHQJQy/Dk2gnN1fZQoaAZHQHD56Ezwc5toB00EAWgIR0CUMzEVnEl3dX2UKGgGR0BtfAqRU3n7aAdNDgFoCEdAlDW/+85CGHV9lChoBkdAcXPg6EJ0GWgHTQwBaAhHQJQ1y27Wd3B1fZQoaAZHQGztDHfdhy9oB007AWgIR0CUNo3JxNqQdX2UKGgGR0Bw/+7EpAlfaAdNkwFoCEdAlDcuDrZ8KHV9lChoBkdActlpG4I8hmgHTSwBaAhHQJQ3ZS4vvjR1fZQoaAZHQGxdDHXEqDtoB03hAWgIR0CUOGtjTa0ydX2UKGgGR0BwHIe8wpOOaAdNJQFoCEdAlDtEGmk30nV9lChoBkdAcjz7MgU1ymgHTWABaAhHQJQ7zEVFhG91fZQoaAZHQHMz+XVsk6doB01MAWgIR0CUO+LjPv8ZdX2UKGgGR0Bw4uGfwqiHaAdNFwFoCEdAlDz3eSB9TnV9lChoBkdAcTMF+NLlFWgHTS4CaAhHQJQ9UUqQRwt1fZQoaAZHQHFe6wt8NQVoB00ZAWgIR0CUPlRGtp22dX2UKGgGR0ByARCHARChaAdNHwFoCEdAlD5utW+49XV9lChoBkdAclH8eS0SiGgHTV0BaAhHQJQ+sHryDqZ1fZQoaAZHQHLJrTtsvZhoB00VAWgIR0CUQKkVvddndX2UKGgGR0BytWpcX3xnaAdNFgFoCEdAlEFr2QGOdXV9lChoBkdAcaNru6VdHGgHTVYCaAhHQJRCIIa99MN1fZQoaAZHQHH27uDzyz5oB0v2aAhHQJREe1x82Jl1fZQoaAZHQG3Kp7CzkZJoB02LAWgIR0CURZBPsRg7dX2UKGgGR0Bx2O7EpAlfaAdNNQFoCEdAlEZ642CNCXV9lChoBkdAbun0Zm7J4mgHTc0BaAhHQJRGyLm6oVF1fZQoaAZHQHMn4bjtG/hoB02MAWgIR0CURv5tWMjvdX2UKGgGR0BxB3eP7vXtaAdL+WgIR0CUR6ZIQOFydX2UKGgGR0BxBPnxJ/XoaAdNLQFoCEdAlEfGFajesXV9lChoBkdAWvoDJU5uImgHTegDaAhHQJRZcr08NhF1fZQoaAZHQHFaPw7T2FpoB0vsaAhHQJRai8SPEKp1fZQoaAZHQHLEpgPVd5ZoB00lAmgIR0CUWxIFNcnmdX2UKGgGR0BwmOVW0Z3taAdNZgFoCEdAlFtJJPIn0HV9lChoBkdAcEIdPtUn5WgHTU8BaAhHQJRbdx+8Xep1fZQoaAZHQG28YgaFVT9oB00kAWgIR0CUXYHryDqXdX2UKGgGR0Bw3MMa0hNeaAdNmwFoCEdAlF69M0xdp3V9lChoBkdAcLCD/EOy3WgHTTQBaAhHQJRfGaa1Cw91fZQoaAZHQG3d46nzg/FoB00IAWgIR0CUX/rnkkrxdX2UKGgGR0ByLUPbwjMWaAdNLQFoCEdAlGK7ns9jgHV9lChoBkdAcbQ6XBxgiWgHTR8BaAhHQJRjmWLP2PF1fZQoaAZHQG805Gz8gp1oB00KAWgIR0CUY8ON5t3wdX2UKGgGR0BwABUJfICEaAdNDwFoCEdAlGS6JIlMRHV9lChoBkdAcUVVfu1F6WgHS/ZoCEdAlGUGTX8O1HV9lChoBkdAco8OuJUHZGgHTVkBaAhHQJRmGPjn3cp1fZQoaAZHQHBP44VARkFoB00IAWgIR0CUZlKPn0TUdX2UKGgGR0BykwWfseGPaAdNxQJoCEdAlGffqTr3TXV9lChoBkdAcpuXkHUtqmgHTUYBaAhHQJRoIkiUxEh1fZQoaAZHQHD39tl7MPloB01CAWgIR0CUaG0o0ALidX2UKGgGR0Bw1W3pfQa8aAdNNQFoCEdAlGmRC+lCTnV9lChoBkdAb/Br2xptamgHTQoBaAhHQJRqCd3B55Z1fZQoaAZHQHFVStNi6QNoB00uAWgIR0CUajjABT4tdX2UKGgGR0Bym90Syt3faAdN0AFoCEdAlGqOjEehf3V9lChoBkdAclpt1IRRM2gHTUoBaAhHQJRrV/lQuVZ1fZQoaAZHQHD5Fzp5eJJoB00EAWgIR0CUbE/keZG8dX2UKGgGR0BvI+LNwBHTaAdNCQFoCEdAlGybnoxHoXV9lChoBkdAcKIv2GqPwWgHTRIBaAhHQJRtg2/BWPt1fZQoaAZHQG8icYZVGTdoB01YAWgIR0CUbo9y925hdX2UKGgGR0BvjFoN/e+FaAdNEAFoCEdAlG8T4xk/bHV9lChoBkdAcAHTNMXaamgHTUsBaAhHQJRvr5ftx+91fZQoaAZHQHEvxWHUMG5oB01CAWgIR0CUcIOZb6gvdX2UKGgGR0Bs2HmzSkTIaAdNJAFoCEdAlHFtSEUTMHV9lChoBkdAcg1XOnl4kmgHTR8BaAhHQJRx0pqh11Z1fZQoaAZHQG9rhnrY5DJoB00IAWgIR0CUckk5p8F7dX2UKGgGR0Bw/6NfgJkYaAdL/WgIR0CUcmz5GjKxdX2UKGgGR0BwzSqEOAiFaAdNHwFoCEdAlHO3NorWiHV9lChoBkdAcUxWbwz+FWgHTSUBaAhHQJR0RZyMkyF1fZQoaAZHQHFFQYtQKrtoB00MAWgIR0CUdEi704BFdX2UKGgGR0BwcLOQhfShaAdNdAFoCEdAlHRJ17pmmXV9lChoBkdAcLN+PRzBAWgHTTABaAhHQJR2fueBg/l1fZQoaAZHQHHlP20zCUJoB00DAWgIR0CUduzpX6qLdX2UKGgGR0ByMWvA44p+aAdNDwFoCEdAlHfV6/qPfnV9lChoBkdAcUqpF1B+nmgHS/5oCEdAlHmtNzr/sHV9lChoBkdAcgdvboKUmmgHTX8BaAhHQJR6Rx5s0pF1fZQoaAZHQHJNGkSElE9oB004AWgIR0CUevkzXSSedX2UKGgGR0BhX8p/gBLgaAdN6ANoCEdAlHtApjMFEHV9lChoBkdAclAJJ5E+gWgHTcIBaAhHQJR7a+wkgOl1fZQoaAZHQHCtBxYJVsFoB01gAWgIR0CUe4n2ZiNLdX2UKGgGR0BwWtznzQNTaAdNJwFoCEdAlHwXE61b7nV9lChoBkdAbbCPcSGrS2gHS/9oCEdAlHw4kiUxEnVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec166d95c3a15d9b24ca840433e0ab4a2b2eaa7ea1dc184a7ce29b8cf2c20049
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f069934bde53876fd0644dc286c04a45f1328a72f2e88c30f20ab023390dec07
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (178 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 258.2160131716094, "std_reward": 15.472104143308842, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-03T21:47:15.845113"}