File size: 1,536 Bytes
7cf3b56
2636e2f
86b3160
 
7cf3b56
86b3160
7cf3b56
 
86b3160
7cf3b56
 
86b3160
7cf3b56
86b3160
 
7cf3b56
86b3160
7cf3b56
86b3160
 
7cf3b56
86b3160
 
 
 
 
7cf3b56
86b3160
7cf3b56
 
 
86b3160
7cf3b56
86b3160
7cf3b56
86b3160
 
 
 
 
7cf3b56
86b3160
7cf3b56
 
 
86b3160
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
base_model: codellama/CodeLlama-7b-Instruct-hf
library_name: transformers
model_name: Codellama-7b-lora-rps-adapter
tags:
- generated_from_trainer
- trl
- sft
licence: license
---

# Model Card for Codellama-7b-lora-rps-adapter

This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf).
It has been trained using [TRL](https://github.com/huggingface/trl).

## Quick start

```python
from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="SimonMA/Codellama-7b-lora-rps-adapter", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```

## Training procedure



This model was trained with SFT.

### Framework versions

- TRL: 0.12.0
- Transformers: 4.46.2
- Pytorch: 2.4.1+cu121
- Datasets: 3.1.0
- Tokenizers: 0.20.3

## Citations



Cite TRL as:
    
```bibtex
@misc{vonwerra2022trl,
	title        = {{TRL: Transformer Reinforcement Learning}},
	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
	year         = 2020,
	journal      = {GitHub repository},
	publisher    = {GitHub},
	howpublished = {\url{https://github.com/huggingface/trl}}
}
```