File size: 1,536 Bytes
7cf3b56 2636e2f 86b3160 7cf3b56 86b3160 7cf3b56 86b3160 7cf3b56 86b3160 7cf3b56 86b3160 7cf3b56 86b3160 7cf3b56 86b3160 7cf3b56 86b3160 7cf3b56 86b3160 7cf3b56 86b3160 7cf3b56 86b3160 7cf3b56 86b3160 7cf3b56 86b3160 7cf3b56 86b3160 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
base_model: codellama/CodeLlama-7b-Instruct-hf
library_name: transformers
model_name: Codellama-7b-lora-rps-adapter
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for Codellama-7b-lora-rps-adapter
This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="SimonMA/Codellama-7b-lora-rps-adapter", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.12.0
- Transformers: 4.46.2
- Pytorch: 2.4.1+cu121
- Datasets: 3.1.0
- Tokenizers: 0.20.3
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |