SimonMA commited on
Commit
6c44b38
1 Parent(s): e670223

End of training

Browse files
README.md CHANGED
@@ -18,7 +18,7 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) on the None dataset.
20
  It achieves the following results on the evaluation set:
21
- - Loss: 0.2977
22
 
23
  ## Model description
24
 
@@ -50,268 +50,238 @@ The following hyperparameters were used during training:
50
 
51
  | Training Loss | Epoch | Step | Validation Loss |
52
  |:-------------:|:------:|:-----:|:---------------:|
53
- | 0.2658 | 1.5177 | 8000 | 0.2979 |
54
- | 0.2628 | 1.5272 | 8050 | 0.2971 |
55
- | 0.2535 | 1.5367 | 8100 | 0.2988 |
56
- | 0.2583 | 1.5462 | 8150 | 0.2980 |
57
- | 0.253 | 1.5557 | 8200 | 0.2963 |
58
- | 0.2835 | 1.5652 | 8250 | 0.2969 |
59
- | 0.2759 | 1.5747 | 8300 | 0.2954 |
60
- | 0.2581 | 1.5841 | 8350 | 0.2952 |
61
- | 0.2639 | 1.5936 | 8400 | 0.2950 |
62
- | 0.2406 | 1.6031 | 8450 | 0.2939 |
63
- | 0.2566 | 1.6126 | 8500 | 0.2939 |
64
- | 0.2607 | 1.6221 | 8550 | 0.2935 |
65
- | 0.2561 | 1.6316 | 8600 | 0.2940 |
66
- | 0.2752 | 1.6411 | 8650 | 0.2932 |
67
- | 0.2523 | 1.6505 | 8700 | 0.2927 |
68
- | 0.2454 | 1.6600 | 8750 | 0.2942 |
69
- | 0.2673 | 1.6695 | 8800 | 0.2930 |
70
- | 0.299 | 1.6790 | 8850 | 0.2935 |
71
- | 0.2681 | 1.6885 | 8900 | 0.2929 |
72
- | 0.2849 | 1.6980 | 8950 | 0.2911 |
73
- | 0.2213 | 1.7075 | 9000 | 0.2926 |
74
- | 0.2592 | 1.7169 | 9050 | 0.2919 |
75
- | 0.2917 | 1.7264 | 9100 | 0.2927 |
76
- | 0.2545 | 1.7359 | 9150 | 0.2911 |
77
- | 0.2702 | 1.7454 | 9200 | 0.2909 |
78
- | 0.2398 | 1.7549 | 9250 | 0.2895 |
79
- | 0.2724 | 1.7644 | 9300 | 0.2900 |
80
- | 0.2556 | 1.7739 | 9350 | 0.2916 |
81
- | 0.2714 | 1.7833 | 9400 | 0.2894 |
82
- | 0.2682 | 1.7928 | 9450 | 0.2899 |
83
- | 0.2492 | 1.8023 | 9500 | 0.2897 |
84
- | 0.262 | 1.8118 | 9550 | 0.2893 |
85
- | 0.2628 | 1.8213 | 9600 | 0.2884 |
86
- | 0.2228 | 1.8308 | 9650 | 0.2890 |
87
- | 0.2335 | 1.8403 | 9700 | 0.2886 |
88
- | 0.2337 | 1.8497 | 9750 | 0.2883 |
89
- | 0.2839 | 1.8592 | 9800 | 0.2872 |
90
- | 0.2649 | 1.8687 | 9850 | 0.2876 |
91
- | 0.2508 | 1.8782 | 9900 | 0.2865 |
92
- | 0.2509 | 1.8877 | 9950 | 0.2852 |
93
- | 0.2965 | 1.8972 | 10000 | 0.2866 |
94
- | 0.2419 | 1.9067 | 10050 | 0.2852 |
95
- | 0.2654 | 1.9161 | 10100 | 0.2854 |
96
- | 0.2621 | 1.9256 | 10150 | 0.2847 |
97
- | 0.2748 | 1.9351 | 10200 | 0.2848 |
98
- | 0.2533 | 1.9446 | 10250 | 0.2841 |
99
- | 0.2514 | 1.9541 | 10300 | 0.2833 |
100
- | 0.2609 | 1.9636 | 10350 | 0.2834 |
101
- | 0.232 | 1.9731 | 10400 | 0.2836 |
102
- | 0.2546 | 1.9825 | 10450 | 0.2841 |
103
- | 0.2431 | 1.9920 | 10500 | 0.2852 |
104
- | 0.2078 | 2.0015 | 10550 | 0.2853 |
105
- | 0.1902 | 2.0110 | 10600 | 0.2942 |
106
- | 0.1936 | 2.0205 | 10650 | 0.2920 |
107
- | 0.1793 | 2.0300 | 10700 | 0.2927 |
108
- | 0.1892 | 2.0395 | 10750 | 0.2928 |
109
- | 0.1818 | 2.0489 | 10800 | 0.2938 |
110
- | 0.1916 | 2.0584 | 10850 | 0.2929 |
111
- | 0.1706 | 2.0679 | 10900 | 0.2934 |
112
- | 0.1937 | 2.0774 | 10950 | 0.2909 |
113
- | 0.1743 | 2.0869 | 11000 | 0.2952 |
114
- | 0.1812 | 2.0964 | 11050 | 0.2952 |
115
- | 0.1705 | 2.1059 | 11100 | 0.2950 |
116
- | 0.1774 | 2.1153 | 11150 | 0.2959 |
117
- | 0.2058 | 2.1248 | 11200 | 0.2935 |
118
- | 0.2053 | 2.1343 | 11250 | 0.2950 |
119
- | 0.2094 | 2.1438 | 11300 | 0.2930 |
120
- | 0.2172 | 2.1533 | 11350 | 0.2947 |
121
- | 0.1747 | 2.1628 | 11400 | 0.2916 |
122
- | 0.201 | 2.1723 | 11450 | 0.2926 |
123
- | 0.1867 | 2.1817 | 11500 | 0.2931 |
124
- | 0.1892 | 2.1912 | 11550 | 0.2917 |
125
- | 0.173 | 2.2007 | 11600 | 0.2939 |
126
- | 0.1785 | 2.2102 | 11650 | 0.2930 |
127
- | 0.2122 | 2.2197 | 11700 | 0.2894 |
128
- | 0.1915 | 2.2292 | 11750 | 0.2914 |
129
- | 0.2049 | 2.2387 | 11800 | 0.2916 |
130
- | 0.1831 | 2.2482 | 11850 | 0.2911 |
131
- | 0.1927 | 2.2576 | 11900 | 0.2917 |
132
- | 0.2014 | 2.2671 | 11950 | 0.2921 |
133
- | 0.1847 | 2.2766 | 12000 | 0.2903 |
134
- | 0.1736 | 2.2861 | 12050 | 0.2959 |
135
- | 0.1885 | 2.2956 | 12100 | 0.2919 |
136
- | 0.1918 | 2.3051 | 12150 | 0.2924 |
137
- | 0.1919 | 2.3146 | 12200 | 0.2895 |
138
- | 0.1888 | 2.3240 | 12250 | 0.2872 |
139
- | 0.1614 | 2.3335 | 12300 | 0.2906 |
140
- | 0.1932 | 2.3430 | 12350 | 0.2889 |
141
- | 0.1882 | 2.3525 | 12400 | 0.2897 |
142
- | 0.1863 | 2.3620 | 12450 | 0.2889 |
143
- | 0.21 | 2.3715 | 12500 | 0.2892 |
144
- | 0.1869 | 2.3810 | 12550 | 0.2897 |
145
- | 0.1757 | 2.3904 | 12600 | 0.2891 |
146
- | 0.1698 | 2.3999 | 12650 | 0.2916 |
147
- | 0.1699 | 2.4094 | 12700 | 0.2888 |
148
- | 0.1908 | 2.4189 | 12750 | 0.2890 |
149
- | 0.2096 | 2.4284 | 12800 | 0.2861 |
150
- | 0.1957 | 2.4379 | 12850 | 0.2907 |
151
- | 0.1971 | 2.4474 | 12900 | 0.2892 |
152
- | 0.187 | 2.4568 | 12950 | 0.2861 |
153
- | 0.1911 | 2.4663 | 13000 | 0.2888 |
154
- | 0.1683 | 2.4758 | 13050 | 0.2871 |
155
- | 0.1783 | 2.4853 | 13100 | 0.2883 |
156
- | 0.1737 | 2.4948 | 13150 | 0.2892 |
157
- | 0.1886 | 2.5043 | 13200 | 0.2878 |
158
- | 0.1744 | 2.5138 | 13250 | 0.2867 |
159
- | 0.1948 | 2.5232 | 13300 | 0.2878 |
160
- | 0.1762 | 2.5327 | 13350 | 0.2878 |
161
- | 0.1772 | 2.5422 | 13400 | 0.2876 |
162
- | 0.1982 | 2.5517 | 13450 | 0.2877 |
163
- | 0.182 | 2.5612 | 13500 | 0.2892 |
164
- | 0.1925 | 2.5707 | 13550 | 0.2866 |
165
- | 0.1834 | 2.5802 | 13600 | 0.2878 |
166
- | 0.167 | 2.5896 | 13650 | 0.2865 |
167
- | 0.2087 | 2.5991 | 13700 | 0.2858 |
168
- | 0.1948 | 2.6086 | 13750 | 0.2864 |
169
- | 0.1709 | 2.6181 | 13800 | 0.2863 |
170
- | 0.1948 | 2.6276 | 13850 | 0.2851 |
171
- | 0.1901 | 2.6371 | 13900 | 0.2862 |
172
- | 0.1817 | 2.6466 | 13950 | 0.2870 |
173
- | 0.1712 | 2.6560 | 14000 | 0.2845 |
174
- | 0.1749 | 2.6655 | 14050 | 0.2856 |
175
- | 0.1956 | 2.6750 | 14100 | 0.2864 |
176
- | 0.1938 | 2.6845 | 14150 | 0.2836 |
177
- | 0.1767 | 2.6940 | 14200 | 0.2840 |
178
- | 0.1885 | 2.7035 | 14250 | 0.2844 |
179
- | 0.1648 | 2.7130 | 14300 | 0.2830 |
180
- | 0.1903 | 2.7224 | 14350 | 0.2835 |
181
- | 0.1901 | 2.7319 | 14400 | 0.2833 |
182
- | 0.1635 | 2.7414 | 14450 | 0.2857 |
183
- | 0.1856 | 2.7509 | 14500 | 0.2830 |
184
- | 0.1921 | 2.7604 | 14550 | 0.2839 |
185
- | 0.1823 | 2.7699 | 14600 | 0.2831 |
186
- | 0.1872 | 2.7794 | 14650 | 0.2823 |
187
- | 0.1585 | 2.7888 | 14700 | 0.2836 |
188
- | 0.1743 | 2.7983 | 14750 | 0.2839 |
189
- | 0.1702 | 2.8078 | 14800 | 0.2827 |
190
- | 0.1923 | 2.8173 | 14850 | 0.2829 |
191
- | 0.1739 | 2.8268 | 14900 | 0.2819 |
192
- | 0.1751 | 2.8363 | 14950 | 0.2810 |
193
- | 0.1945 | 2.8458 | 15000 | 0.2817 |
194
- | 0.181 | 2.8552 | 15050 | 0.2816 |
195
- | 0.1718 | 2.8647 | 15100 | 0.2812 |
196
- | 0.1811 | 2.8742 | 15150 | 0.2807 |
197
- | 0.1917 | 2.8837 | 15200 | 0.2818 |
198
- | 0.1776 | 2.8932 | 15250 | 0.2806 |
199
- | 0.1656 | 2.9027 | 15300 | 0.2811 |
200
- | 0.1794 | 2.9122 | 15350 | 0.2812 |
201
- | 0.1969 | 2.9216 | 15400 | 0.2799 |
202
- | 0.1741 | 2.9311 | 15450 | 0.2803 |
203
- | 0.1654 | 2.9406 | 15500 | 0.2817 |
204
- | 0.1682 | 2.9501 | 15550 | 0.2806 |
205
- | 0.175 | 2.9596 | 15600 | 0.2797 |
206
- | 0.1597 | 2.9691 | 15650 | 0.2813 |
207
- | 0.1723 | 2.9786 | 15700 | 0.2821 |
208
- | 0.1957 | 2.9880 | 15750 | 0.2786 |
209
- | 0.1689 | 2.9975 | 15800 | 0.2800 |
210
- | 0.1795 | 3.0070 | 15850 | 0.2937 |
211
- | 0.1294 | 3.0165 | 15900 | 0.2980 |
212
- | 0.1169 | 3.0260 | 15950 | 0.3020 |
213
- | 0.1194 | 3.0355 | 16000 | 0.3021 |
214
- | 0.1164 | 3.0450 | 16050 | 0.3001 |
215
- | 0.1276 | 3.0544 | 16100 | 0.3033 |
216
- | 0.1265 | 3.0639 | 16150 | 0.2986 |
217
- | 0.1239 | 3.0734 | 16200 | 0.3006 |
218
- | 0.1129 | 3.0829 | 16250 | 0.3029 |
219
- | 0.1294 | 3.0924 | 16300 | 0.2992 |
220
- | 0.1198 | 3.1019 | 16350 | 0.3027 |
221
- | 0.1168 | 3.1114 | 16400 | 0.3022 |
222
- | 0.1302 | 3.1208 | 16450 | 0.2996 |
223
- | 0.1287 | 3.1303 | 16500 | 0.3020 |
224
- | 0.1181 | 3.1398 | 16550 | 0.3001 |
225
- | 0.1261 | 3.1493 | 16600 | 0.3019 |
226
- | 0.1297 | 3.1588 | 16650 | 0.3037 |
227
- | 0.1212 | 3.1683 | 16700 | 0.3047 |
228
- | 0.1234 | 3.1778 | 16750 | 0.3033 |
229
- | 0.1317 | 3.1873 | 16800 | 0.3023 |
230
- | 0.1425 | 3.1967 | 16850 | 0.2999 |
231
- | 0.1187 | 3.2062 | 16900 | 0.3039 |
232
- | 0.1313 | 3.2157 | 16950 | 0.3002 |
233
- | 0.1133 | 3.2252 | 17000 | 0.3022 |
234
- | 0.1161 | 3.2347 | 17050 | 0.3017 |
235
- | 0.1354 | 3.2442 | 17100 | 0.3024 |
236
- | 0.1204 | 3.2537 | 17150 | 0.2998 |
237
- | 0.1354 | 3.2631 | 17200 | 0.3012 |
238
- | 0.1263 | 3.2726 | 17250 | 0.3001 |
239
- | 0.1281 | 3.2821 | 17300 | 0.3015 |
240
- | 0.123 | 3.2916 | 17350 | 0.3020 |
241
- | 0.1384 | 3.3011 | 17400 | 0.3009 |
242
- | 0.1257 | 3.3106 | 17450 | 0.3014 |
243
- | 0.1125 | 3.3201 | 17500 | 0.2992 |
244
- | 0.1218 | 3.3295 | 17550 | 0.2988 |
245
- | 0.1295 | 3.3390 | 17600 | 0.2997 |
246
- | 0.1224 | 3.3485 | 17650 | 0.3006 |
247
- | 0.1289 | 3.3580 | 17700 | 0.3011 |
248
- | 0.1369 | 3.3675 | 17750 | 0.3005 |
249
- | 0.1285 | 3.3770 | 17800 | 0.3002 |
250
- | 0.1247 | 3.3865 | 17850 | 0.2997 |
251
- | 0.1421 | 3.3959 | 17900 | 0.2988 |
252
- | 0.1246 | 3.4054 | 17950 | 0.2980 |
253
- | 0.1345 | 3.4149 | 18000 | 0.2988 |
254
- | 0.1345 | 3.4244 | 18050 | 0.2980 |
255
- | 0.1251 | 3.4339 | 18100 | 0.2992 |
256
- | 0.1194 | 3.4434 | 18150 | 0.2998 |
257
- | 0.1163 | 3.4529 | 18200 | 0.2979 |
258
- | 0.1254 | 3.4623 | 18250 | 0.2993 |
259
- | 0.1299 | 3.4718 | 18300 | 0.3003 |
260
- | 0.1162 | 3.4813 | 18350 | 0.2997 |
261
- | 0.1259 | 3.4908 | 18400 | 0.2983 |
262
- | 0.1304 | 3.5003 | 18450 | 0.2976 |
263
- | 0.1328 | 3.5098 | 18500 | 0.2964 |
264
- | 0.1186 | 3.5193 | 18550 | 0.2981 |
265
- | 0.114 | 3.5287 | 18600 | 0.2990 |
266
- | 0.1287 | 3.5382 | 18650 | 0.2986 |
267
- | 0.1185 | 3.5477 | 18700 | 0.2995 |
268
- | 0.1201 | 3.5572 | 18750 | 0.2980 |
269
- | 0.1173 | 3.5667 | 18800 | 0.2994 |
270
- | 0.1361 | 3.5762 | 18850 | 0.2980 |
271
- | 0.1163 | 3.5857 | 18900 | 0.2991 |
272
- | 0.1223 | 3.5951 | 18950 | 0.2982 |
273
- | 0.1289 | 3.6046 | 19000 | 0.2983 |
274
- | 0.129 | 3.6141 | 19050 | 0.2966 |
275
- | 0.1348 | 3.6236 | 19100 | 0.2979 |
276
- | 0.1211 | 3.6331 | 19150 | 0.2988 |
277
- | 0.1276 | 3.6426 | 19200 | 0.2974 |
278
- | 0.1151 | 3.6521 | 19250 | 0.2987 |
279
- | 0.1304 | 3.6615 | 19300 | 0.2970 |
280
- | 0.1138 | 3.6710 | 19350 | 0.2978 |
281
- | 0.1202 | 3.6805 | 19400 | 0.2987 |
282
- | 0.1378 | 3.6900 | 19450 | 0.2975 |
283
- | 0.1244 | 3.6995 | 19500 | 0.2972 |
284
- | 0.13 | 3.7090 | 19550 | 0.2978 |
285
- | 0.1162 | 3.7185 | 19600 | 0.2982 |
286
- | 0.1301 | 3.7279 | 19650 | 0.2970 |
287
- | 0.1186 | 3.7374 | 19700 | 0.2977 |
288
- | 0.1158 | 3.7469 | 19750 | 0.2976 |
289
- | 0.1181 | 3.7564 | 19800 | 0.2975 |
290
- | 0.1186 | 3.7659 | 19850 | 0.2980 |
291
- | 0.121 | 3.7754 | 19900 | 0.2974 |
292
- | 0.1355 | 3.7849 | 19950 | 0.2970 |
293
- | 0.1222 | 3.7943 | 20000 | 0.2961 |
294
- | 0.1307 | 3.8038 | 20050 | 0.2964 |
295
- | 0.1223 | 3.8133 | 20100 | 0.2957 |
296
- | 0.1097 | 3.8228 | 20150 | 0.2961 |
297
- | 0.1215 | 3.8323 | 20200 | 0.2965 |
298
- | 0.1208 | 3.8418 | 20250 | 0.2973 |
299
- | 0.1199 | 3.8513 | 20300 | 0.2973 |
300
- | 0.1249 | 3.8607 | 20350 | 0.2966 |
301
- | 0.1143 | 3.8702 | 20400 | 0.2972 |
302
- | 0.1316 | 3.8797 | 20450 | 0.2971 |
303
- | 0.1202 | 3.8892 | 20500 | 0.2973 |
304
- | 0.1364 | 3.8987 | 20550 | 0.2972 |
305
- | 0.1193 | 3.9082 | 20600 | 0.2975 |
306
- | 0.1246 | 3.9177 | 20650 | 0.2971 |
307
- | 0.1214 | 3.9271 | 20700 | 0.2971 |
308
- | 0.1108 | 3.9366 | 20750 | 0.2976 |
309
- | 0.1224 | 3.9461 | 20800 | 0.2975 |
310
- | 0.1202 | 3.9556 | 20850 | 0.2975 |
311
- | 0.1135 | 3.9651 | 20900 | 0.2975 |
312
- | 0.1183 | 3.9746 | 20950 | 0.2977 |
313
- | 0.1105 | 3.9841 | 21000 | 0.2977 |
314
- | 0.1307 | 3.9935 | 21050 | 0.2977 |
315
 
316
 
317
  ### Framework versions
@@ -319,5 +289,5 @@ The following hyperparameters were used during training:
319
  - PEFT 0.11.1
320
  - Transformers 4.41.2
321
  - Pytorch 2.3.0+cu121
322
- - Datasets 2.19.2
323
  - Tokenizers 0.19.1
 
18
 
19
  This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) on the None dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.3064
22
 
23
  ## Model description
24
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss |
52
  |:-------------:|:------:|:-----:|:---------------:|
53
+ | 0.2516 | 1.8549 | 10000 | 0.2925 |
54
+ | 0.2922 | 1.8642 | 10050 | 0.2922 |
55
+ | 0.266 | 1.8735 | 10100 | 0.2930 |
56
+ | 0.2656 | 1.8828 | 10150 | 0.2932 |
57
+ | 0.2594 | 1.8920 | 10200 | 0.2916 |
58
+ | 0.255 | 1.9013 | 10250 | 0.2915 |
59
+ | 0.2722 | 1.9106 | 10300 | 0.2922 |
60
+ | 0.2211 | 1.9199 | 10350 | 0.2921 |
61
+ | 0.2755 | 1.9291 | 10400 | 0.2909 |
62
+ | 0.2222 | 1.9384 | 10450 | 0.2919 |
63
+ | 0.227 | 1.9477 | 10500 | 0.2913 |
64
+ | 0.2264 | 1.9570 | 10550 | 0.2929 |
65
+ | 0.2623 | 1.9662 | 10600 | 0.2915 |
66
+ | 0.2488 | 1.9755 | 10650 | 0.2919 |
67
+ | 0.2593 | 1.9848 | 10700 | 0.2902 |
68
+ | 0.2277 | 1.9941 | 10750 | 0.2896 |
69
+ | 0.2307 | 2.0033 | 10800 | 0.2930 |
70
+ | 0.1822 | 2.0126 | 10850 | 0.2991 |
71
+ | 0.1777 | 2.0219 | 10900 | 0.2991 |
72
+ | 0.1916 | 2.0312 | 10950 | 0.3001 |
73
+ | 0.1895 | 2.0404 | 11000 | 0.3005 |
74
+ | 0.2034 | 2.0497 | 11050 | 0.2991 |
75
+ | 0.2086 | 2.0590 | 11100 | 0.2999 |
76
+ | 0.1951 | 2.0683 | 11150 | 0.2983 |
77
+ | 0.1652 | 2.0775 | 11200 | 0.2988 |
78
+ | 0.1861 | 2.0868 | 11250 | 0.2996 |
79
+ | 0.1655 | 2.0961 | 11300 | 0.3025 |
80
+ | 0.201 | 2.1054 | 11350 | 0.2996 |
81
+ | 0.1877 | 2.1146 | 11400 | 0.3011 |
82
+ | 0.1832 | 2.1239 | 11450 | 0.3018 |
83
+ | 0.18 | 2.1332 | 11500 | 0.2991 |
84
+ | 0.1865 | 2.1425 | 11550 | 0.3029 |
85
+ | 0.1918 | 2.1517 | 11600 | 0.2994 |
86
+ | 0.1917 | 2.1610 | 11650 | 0.2983 |
87
+ | 0.1722 | 2.1703 | 11700 | 0.3000 |
88
+ | 0.1865 | 2.1796 | 11750 | 0.2987 |
89
+ | 0.1997 | 2.1888 | 11800 | 0.2987 |
90
+ | 0.1907 | 2.1981 | 11850 | 0.3019 |
91
+ | 0.1981 | 2.2074 | 11900 | 0.2974 |
92
+ | 0.1918 | 2.2167 | 11950 | 0.2986 |
93
+ | 0.1839 | 2.2259 | 12000 | 0.2987 |
94
+ | 0.1888 | 2.2352 | 12050 | 0.2969 |
95
+ | 0.1763 | 2.2445 | 12100 | 0.2989 |
96
+ | 0.1996 | 2.2538 | 12150 | 0.2982 |
97
+ | 0.1917 | 2.2630 | 12200 | 0.3011 |
98
+ | 0.172 | 2.2723 | 12250 | 0.2997 |
99
+ | 0.1857 | 2.2816 | 12300 | 0.3035 |
100
+ | 0.1844 | 2.2909 | 12350 | 0.2978 |
101
+ | 0.2055 | 2.3001 | 12400 | 0.2986 |
102
+ | 0.189 | 2.3094 | 12450 | 0.2979 |
103
+ | 0.1958 | 2.3187 | 12500 | 0.2977 |
104
+ | 0.1954 | 2.3280 | 12550 | 0.2988 |
105
+ | 0.1796 | 2.3372 | 12600 | 0.2983 |
106
+ | 0.2019 | 2.3465 | 12650 | 0.2955 |
107
+ | 0.1816 | 2.3558 | 12700 | 0.2962 |
108
+ | 0.1763 | 2.3651 | 12750 | 0.2976 |
109
+ | 0.1892 | 2.3743 | 12800 | 0.2968 |
110
+ | 0.1805 | 2.3836 | 12850 | 0.2973 |
111
+ | 0.1878 | 2.3929 | 12900 | 0.2958 |
112
+ | 0.1852 | 2.4022 | 12950 | 0.2971 |
113
+ | 0.1907 | 2.4114 | 13000 | 0.2985 |
114
+ | 0.2004 | 2.4207 | 13050 | 0.2970 |
115
+ | 0.1871 | 2.4300 | 13100 | 0.2965 |
116
+ | 0.1958 | 2.4393 | 13150 | 0.2966 |
117
+ | 0.2132 | 2.4485 | 13200 | 0.2940 |
118
+ | 0.1819 | 2.4578 | 13250 | 0.2951 |
119
+ | 0.1627 | 2.4671 | 13300 | 0.2965 |
120
+ | 0.1821 | 2.4763 | 13350 | 0.2954 |
121
+ | 0.1902 | 2.4856 | 13400 | 0.2939 |
122
+ | 0.1992 | 2.4949 | 13450 | 0.2960 |
123
+ | 0.1936 | 2.5042 | 13500 | 0.2946 |
124
+ | 0.2074 | 2.5134 | 13550 | 0.2937 |
125
+ | 0.1877 | 2.5227 | 13600 | 0.2959 |
126
+ | 0.2026 | 2.5320 | 13650 | 0.2935 |
127
+ | 0.1816 | 2.5413 | 13700 | 0.2961 |
128
+ | 0.1769 | 2.5505 | 13750 | 0.2941 |
129
+ | 0.175 | 2.5598 | 13800 | 0.2944 |
130
+ | 0.1791 | 2.5691 | 13850 | 0.2954 |
131
+ | 0.2015 | 2.5784 | 13900 | 0.2946 |
132
+ | 0.1845 | 2.5876 | 13950 | 0.2926 |
133
+ | 0.1699 | 2.5969 | 14000 | 0.2952 |
134
+ | 0.1739 | 2.6062 | 14050 | 0.2930 |
135
+ | 0.1817 | 2.6155 | 14100 | 0.2933 |
136
+ | 0.174 | 2.6247 | 14150 | 0.2943 |
137
+ | 0.2047 | 2.6340 | 14200 | 0.2936 |
138
+ | 0.1843 | 2.6433 | 14250 | 0.2939 |
139
+ | 0.2035 | 2.6526 | 14300 | 0.2933 |
140
+ | 0.2025 | 2.6618 | 14350 | 0.2935 |
141
+ | 0.1896 | 2.6711 | 14400 | 0.2937 |
142
+ | 0.2029 | 2.6804 | 14450 | 0.2938 |
143
+ | 0.1953 | 2.6897 | 14500 | 0.2941 |
144
+ | 0.1952 | 2.6989 | 14550 | 0.2930 |
145
+ | 0.1847 | 2.7082 | 14600 | 0.2920 |
146
+ | 0.1896 | 2.7175 | 14650 | 0.2935 |
147
+ | 0.1703 | 2.7268 | 14700 | 0.2921 |
148
+ | 0.1845 | 2.7360 | 14750 | 0.2923 |
149
+ | 0.1809 | 2.7453 | 14800 | 0.2920 |
150
+ | 0.1924 | 2.7546 | 14850 | 0.2929 |
151
+ | 0.1894 | 2.7639 | 14900 | 0.2909 |
152
+ | 0.1926 | 2.7731 | 14950 | 0.2908 |
153
+ | 0.2106 | 2.7824 | 15000 | 0.2921 |
154
+ | 0.1705 | 2.7917 | 15050 | 0.2903 |
155
+ | 0.1739 | 2.8010 | 15100 | 0.2892 |
156
+ | 0.1798 | 2.8102 | 15150 | 0.2921 |
157
+ | 0.2088 | 2.8195 | 15200 | 0.2909 |
158
+ | 0.1862 | 2.8288 | 15250 | 0.2920 |
159
+ | 0.1891 | 2.8381 | 15300 | 0.2919 |
160
+ | 0.2022 | 2.8473 | 15350 | 0.2899 |
161
+ | 0.1655 | 2.8566 | 15400 | 0.2908 |
162
+ | 0.1771 | 2.8659 | 15450 | 0.2905 |
163
+ | 0.1747 | 2.8752 | 15500 | 0.2886 |
164
+ | 0.1904 | 2.8844 | 15550 | 0.2891 |
165
+ | 0.1821 | 2.8937 | 15600 | 0.2892 |
166
+ | 0.1687 | 2.9030 | 15650 | 0.2892 |
167
+ | 0.1837 | 2.9123 | 15700 | 0.2904 |
168
+ | 0.1643 | 2.9215 | 15750 | 0.2898 |
169
+ | 0.1897 | 2.9308 | 15800 | 0.2882 |
170
+ | 0.2062 | 2.9401 | 15850 | 0.2885 |
171
+ | 0.178 | 2.9494 | 15900 | 0.2881 |
172
+ | 0.1719 | 2.9586 | 15950 | 0.2902 |
173
+ | 0.1866 | 2.9679 | 16000 | 0.2881 |
174
+ | 0.1678 | 2.9772 | 16050 | 0.2878 |
175
+ | 0.1794 | 2.9865 | 16100 | 0.2889 |
176
+ | 0.1805 | 2.9957 | 16150 | 0.2878 |
177
+ | 0.161 | 3.0050 | 16200 | 0.2981 |
178
+ | 0.1198 | 3.0143 | 16250 | 0.3084 |
179
+ | 0.1213 | 3.0236 | 16300 | 0.3084 |
180
+ | 0.144 | 3.0328 | 16350 | 0.3076 |
181
+ | 0.1362 | 3.0421 | 16400 | 0.3092 |
182
+ | 0.1315 | 3.0514 | 16450 | 0.3089 |
183
+ | 0.1358 | 3.0607 | 16500 | 0.3094 |
184
+ | 0.1276 | 3.0699 | 16550 | 0.3087 |
185
+ | 0.125 | 3.0792 | 16600 | 0.3114 |
186
+ | 0.1203 | 3.0885 | 16650 | 0.3112 |
187
+ | 0.1295 | 3.0978 | 16700 | 0.3100 |
188
+ | 0.1191 | 3.1070 | 16750 | 0.3092 |
189
+ | 0.1379 | 3.1163 | 16800 | 0.3087 |
190
+ | 0.1175 | 3.1256 | 16850 | 0.3122 |
191
+ | 0.1314 | 3.1349 | 16900 | 0.3066 |
192
+ | 0.1266 | 3.1441 | 16950 | 0.3077 |
193
+ | 0.1158 | 3.1534 | 17000 | 0.3088 |
194
+ | 0.128 | 3.1627 | 17050 | 0.3106 |
195
+ | 0.1368 | 3.1720 | 17100 | 0.3095 |
196
+ | 0.1334 | 3.1812 | 17150 | 0.3055 |
197
+ | 0.1265 | 3.1905 | 17200 | 0.3104 |
198
+ | 0.133 | 3.1998 | 17250 | 0.3068 |
199
+ | 0.1263 | 3.2091 | 17300 | 0.3078 |
200
+ | 0.1269 | 3.2183 | 17350 | 0.3091 |
201
+ | 0.1372 | 3.2276 | 17400 | 0.3083 |
202
+ | 0.122 | 3.2369 | 17450 | 0.3083 |
203
+ | 0.1403 | 3.2462 | 17500 | 0.3087 |
204
+ | 0.1331 | 3.2554 | 17550 | 0.3086 |
205
+ | 0.1296 | 3.2647 | 17600 | 0.3079 |
206
+ | 0.1248 | 3.2740 | 17650 | 0.3056 |
207
+ | 0.1299 | 3.2832 | 17700 | 0.3088 |
208
+ | 0.1283 | 3.2925 | 17750 | 0.3086 |
209
+ | 0.1286 | 3.3018 | 17800 | 0.3077 |
210
+ | 0.1165 | 3.3111 | 17850 | 0.3088 |
211
+ | 0.1228 | 3.3203 | 17900 | 0.3082 |
212
+ | 0.1258 | 3.3296 | 17950 | 0.3096 |
213
+ | 0.1246 | 3.3389 | 18000 | 0.3124 |
214
+ | 0.1238 | 3.3482 | 18050 | 0.3111 |
215
+ | 0.1211 | 3.3574 | 18100 | 0.3088 |
216
+ | 0.1345 | 3.3667 | 18150 | 0.3069 |
217
+ | 0.1362 | 3.3760 | 18200 | 0.3066 |
218
+ | 0.1199 | 3.3853 | 18250 | 0.3065 |
219
+ | 0.1252 | 3.3945 | 18300 | 0.3064 |
220
+ | 0.1209 | 3.4038 | 18350 | 0.3096 |
221
+ | 0.1414 | 3.4131 | 18400 | 0.3062 |
222
+ | 0.1496 | 3.4224 | 18450 | 0.3059 |
223
+ | 0.1163 | 3.4316 | 18500 | 0.3064 |
224
+ | 0.1459 | 3.4409 | 18550 | 0.3067 |
225
+ | 0.1299 | 3.4502 | 18600 | 0.3088 |
226
+ | 0.1285 | 3.4595 | 18650 | 0.3064 |
227
+ | 0.1252 | 3.4687 | 18700 | 0.3076 |
228
+ | 0.1208 | 3.4780 | 18750 | 0.3074 |
229
+ | 0.1194 | 3.4873 | 18800 | 0.3080 |
230
+ | 0.1308 | 3.4966 | 18850 | 0.3061 |
231
+ | 0.1137 | 3.5058 | 18900 | 0.3061 |
232
+ | 0.1119 | 3.5151 | 18950 | 0.3081 |
233
+ | 0.1251 | 3.5244 | 19000 | 0.3080 |
234
+ | 0.1259 | 3.5337 | 19050 | 0.3063 |
235
+ | 0.1311 | 3.5429 | 19100 | 0.3066 |
236
+ | 0.1123 | 3.5522 | 19150 | 0.3075 |
237
+ | 0.1255 | 3.5615 | 19200 | 0.3082 |
238
+ | 0.1259 | 3.5708 | 19250 | 0.3072 |
239
+ | 0.1279 | 3.5800 | 19300 | 0.3057 |
240
+ | 0.1397 | 3.5893 | 19350 | 0.3048 |
241
+ | 0.1179 | 3.5986 | 19400 | 0.3060 |
242
+ | 0.1412 | 3.6079 | 19450 | 0.3057 |
243
+ | 0.1151 | 3.6171 | 19500 | 0.3069 |
244
+ | 0.1138 | 3.6264 | 19550 | 0.3076 |
245
+ | 0.1357 | 3.6357 | 19600 | 0.3077 |
246
+ | 0.114 | 3.6450 | 19650 | 0.3086 |
247
+ | 0.118 | 3.6542 | 19700 | 0.3085 |
248
+ | 0.1388 | 3.6635 | 19750 | 0.3074 |
249
+ | 0.1253 | 3.6728 | 19800 | 0.3081 |
250
+ | 0.1243 | 3.6821 | 19850 | 0.3069 |
251
+ | 0.1241 | 3.6913 | 19900 | 0.3068 |
252
+ | 0.1336 | 3.7006 | 19950 | 0.3067 |
253
+ | 0.1252 | 3.7099 | 20000 | 0.3079 |
254
+ | 0.1198 | 3.7192 | 20050 | 0.3077 |
255
+ | 0.1416 | 3.7284 | 20100 | 0.3054 |
256
+ | 0.1268 | 3.7377 | 20150 | 0.3071 |
257
+ | 0.126 | 3.7470 | 20200 | 0.3073 |
258
+ | 0.1123 | 3.7563 | 20250 | 0.3076 |
259
+ | 0.1228 | 3.7655 | 20300 | 0.3070 |
260
+ | 0.1199 | 3.7748 | 20350 | 0.3082 |
261
+ | 0.1307 | 3.7841 | 20400 | 0.3079 |
262
+ | 0.1234 | 3.7934 | 20450 | 0.3071 |
263
+ | 0.1346 | 3.8026 | 20500 | 0.3074 |
264
+ | 0.1115 | 3.8119 | 20550 | 0.3074 |
265
+ | 0.1183 | 3.8212 | 20600 | 0.3067 |
266
+ | 0.1185 | 3.8305 | 20650 | 0.3066 |
267
+ | 0.1203 | 3.8397 | 20700 | 0.3074 |
268
+ | 0.1262 | 3.8490 | 20750 | 0.3078 |
269
+ | 0.1232 | 3.8583 | 20800 | 0.3077 |
270
+ | 0.1196 | 3.8676 | 20850 | 0.3075 |
271
+ | 0.1217 | 3.8768 | 20900 | 0.3071 |
272
+ | 0.1392 | 3.8861 | 20950 | 0.3068 |
273
+ | 0.117 | 3.8954 | 21000 | 0.3065 |
274
+ | 0.1396 | 3.9047 | 21050 | 0.3058 |
275
+ | 0.1149 | 3.9139 | 21100 | 0.3061 |
276
+ | 0.1235 | 3.9232 | 21150 | 0.3062 |
277
+ | 0.125 | 3.9325 | 21200 | 0.3064 |
278
+ | 0.1272 | 3.9418 | 21250 | 0.3060 |
279
+ | 0.1189 | 3.9510 | 21300 | 0.3062 |
280
+ | 0.1132 | 3.9603 | 21350 | 0.3064 |
281
+ | 0.1221 | 3.9696 | 21400 | 0.3063 |
282
+ | 0.1283 | 3.9789 | 21450 | 0.3064 |
283
+ | 0.135 | 3.9881 | 21500 | 0.3063 |
284
+ | 0.1207 | 3.9974 | 21550 | 0.3064 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285
 
286
 
287
  ### Framework versions
 
289
  - PEFT 0.11.1
290
  - Transformers 4.41.2
291
  - Pytorch 2.3.0+cu121
292
+ - Datasets 2.20.0
293
  - Tokenizers 0.19.1
adapter_config.json CHANGED
@@ -21,12 +21,12 @@
21
  "revision": null,
22
  "target_modules": [
23
  "down_proj",
24
- "up_proj",
25
- "q_proj",
26
  "o_proj",
27
- "gate_proj",
28
  "k_proj",
29
- "v_proj"
 
 
 
30
  ],
31
  "task_type": "CAUSAL_LM",
32
  "use_dora": false,
 
21
  "revision": null,
22
  "target_modules": [
23
  "down_proj",
 
 
24
  "o_proj",
 
25
  "k_proj",
26
+ "up_proj",
27
+ "gate_proj",
28
+ "v_proj",
29
+ "q_proj"
30
  ],
31
  "task_type": "CAUSAL_LM",
32
  "use_dora": false,
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:528fbfbe7312fa3393d8748b97ec398101a12fd6ba31983e69474101ee30b402
3
  size 2332095256
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa7458498fe74573a5643ce2046beee4ac8dfecc2d1d588b2e87a7f3dc101efb
3
  size 2332095256
runs/Jun18_04-28-58_ff71050d2fb7/events.out.tfevents.1718684945.ff71050d2fb7.20224.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e55e8dcf06e371282c63d6824f3775e3c5041f5bb42d1cc23a1eddc70c93eec
3
+ size 160824
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c77f732211ab66d0a55442a5422becdc12617adcc3273b3f9ac56d8af53e9d86
3
- size 5368
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9994e30b6b1daddaa8eaaa0a5b9fe9748db6499d3179c429c06fbb8e662172e4
3
+ size 5432