--- base_model: codellama/CodeLlama-7b-Instruct-hf library_name: peft license: llama2 tags: - trl - sft - generated_from_trainer model-index: - name: Codellama-7b-lora-rps-adapter results: [] --- # Codellama-7b-lora-rps-adapter This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2966 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 0.1821 | 2.4463 | 14000 | 0.2874 | | 0.194 | 2.4550 | 14050 | 0.2881 | | 0.174 | 2.4637 | 14100 | 0.2896 | | 0.1964 | 2.4725 | 14150 | 0.2865 | | 0.1885 | 2.4812 | 14200 | 0.2862 | | 0.1929 | 2.4900 | 14250 | 0.2889 | | 0.1873 | 2.4987 | 14300 | 0.2877 | | 0.2055 | 2.5074 | 14350 | 0.2868 | | 0.1769 | 2.5162 | 14400 | 0.2875 | | 0.1796 | 2.5249 | 14450 | 0.2870 | | 0.1863 | 2.5336 | 14500 | 0.2860 | | 0.1973 | 2.5424 | 14550 | 0.2851 | | 0.1799 | 2.5511 | 14600 | 0.2854 | | 0.1911 | 2.5598 | 14650 | 0.2876 | | 0.1893 | 2.5686 | 14700 | 0.2850 | | 0.1919 | 2.5773 | 14750 | 0.2859 | | 0.1842 | 2.5861 | 14800 | 0.2854 | | 0.1852 | 2.5948 | 14850 | 0.2843 | | 0.1992 | 2.6035 | 14900 | 0.2831 | | 0.1728 | 2.6123 | 14950 | 0.2857 | | 0.1798 | 2.6210 | 15000 | 0.2842 | | 0.2039 | 2.6297 | 15050 | 0.2836 | | 0.1929 | 2.6385 | 15100 | 0.2847 | | 0.2046 | 2.6472 | 15150 | 0.2840 | | 0.1805 | 2.6559 | 15200 | 0.2848 | | 0.1839 | 2.6647 | 15250 | 0.2857 | | 0.1908 | 2.6734 | 15300 | 0.2826 | | 0.2015 | 2.6822 | 15350 | 0.2825 | | 0.1706 | 2.6909 | 15400 | 0.2825 | | 0.1788 | 2.6996 | 15450 | 0.2823 | | 0.1961 | 2.7084 | 15500 | 0.2828 | | 0.1979 | 2.7171 | 15550 | 0.2814 | | 0.1852 | 2.7258 | 15600 | 0.2839 | | 0.1828 | 2.7346 | 15650 | 0.2845 | | 0.1919 | 2.7433 | 15700 | 0.2828 | | 0.2192 | 2.7521 | 15750 | 0.2809 | | 0.1792 | 2.7608 | 15800 | 0.2810 | | 0.1877 | 2.7695 | 15850 | 0.2814 | | 0.1888 | 2.7783 | 15900 | 0.2818 | | 0.1833 | 2.7870 | 15950 | 0.2837 | | 0.1975 | 2.7957 | 16000 | 0.2819 | | 0.1773 | 2.8045 | 16050 | 0.2825 | | 0.2118 | 2.8132 | 16100 | 0.2819 | | 0.1926 | 2.8219 | 16150 | 0.2836 | | 0.1946 | 2.8307 | 16200 | 0.2810 | | 0.1905 | 2.8394 | 16250 | 0.2815 | | 0.1924 | 2.8482 | 16300 | 0.2814 | | 0.1775 | 2.8569 | 16350 | 0.2816 | | 0.1957 | 2.8656 | 16400 | 0.2827 | | 0.2197 | 2.8744 | 16450 | 0.2794 | | 0.1894 | 2.8831 | 16500 | 0.2805 | | 0.1957 | 2.8918 | 16550 | 0.2797 | | 0.1995 | 2.9006 | 16600 | 0.2804 | | 0.2178 | 2.9093 | 16650 | 0.2803 | | 0.1941 | 2.9180 | 16700 | 0.2797 | | 0.1752 | 2.9268 | 16750 | 0.2819 | | 0.1646 | 2.9355 | 16800 | 0.2816 | | 0.1873 | 2.9443 | 16850 | 0.2799 | | 0.1964 | 2.9530 | 16900 | 0.2800 | | 0.1828 | 2.9617 | 16950 | 0.2798 | | 0.1835 | 2.9705 | 17000 | 0.2798 | | 0.1946 | 2.9792 | 17050 | 0.2799 | | 0.1925 | 2.9879 | 17100 | 0.2784 | | 0.1731 | 2.9967 | 17150 | 0.2792 | | 0.1531 | 3.0054 | 17200 | 0.2895 | | 0.1187 | 3.0142 | 17250 | 0.2989 | | 0.127 | 3.0229 | 17300 | 0.3017 | | 0.1143 | 3.0316 | 17350 | 0.3015 | | 0.1457 | 3.0404 | 17400 | 0.3004 | | 0.1208 | 3.0491 | 17450 | 0.3014 | | 0.1286 | 3.0578 | 17500 | 0.3010 | | 0.1481 | 3.0666 | 17550 | 0.3007 | | 0.1351 | 3.0753 | 17600 | 0.2996 | | 0.1232 | 3.0840 | 17650 | 0.2998 | | 0.1329 | 3.0928 | 17700 | 0.3002 | | 0.1289 | 3.1015 | 17750 | 0.3037 | | 0.1188 | 3.1103 | 17800 | 0.3022 | | 0.1392 | 3.1190 | 17850 | 0.3011 | | 0.1344 | 3.1277 | 17900 | 0.3011 | | 0.1144 | 3.1365 | 17950 | 0.3013 | | 0.1238 | 3.1452 | 18000 | 0.3000 | | 0.1273 | 3.1539 | 18050 | 0.3016 | | 0.1218 | 3.1627 | 18100 | 0.3014 | | 0.1331 | 3.1714 | 18150 | 0.3015 | | 0.1297 | 3.1802 | 18200 | 0.3001 | | 0.1143 | 3.1889 | 18250 | 0.3005 | | 0.1239 | 3.1976 | 18300 | 0.2992 | | 0.1363 | 3.2064 | 18350 | 0.3002 | | 0.1308 | 3.2151 | 18400 | 0.2988 | | 0.1362 | 3.2238 | 18450 | 0.3004 | | 0.1242 | 3.2326 | 18500 | 0.2997 | | 0.1316 | 3.2413 | 18550 | 0.3010 | | 0.1179 | 3.2500 | 18600 | 0.3029 | | 0.1366 | 3.2588 | 18650 | 0.3031 | | 0.1392 | 3.2675 | 18700 | 0.2982 | | 0.1294 | 3.2763 | 18750 | 0.2981 | | 0.1369 | 3.2850 | 18800 | 0.2979 | | 0.1271 | 3.2937 | 18850 | 0.3006 | | 0.1336 | 3.3025 | 18900 | 0.2996 | | 0.1324 | 3.3112 | 18950 | 0.3014 | | 0.1195 | 3.3199 | 19000 | 0.2994 | | 0.1447 | 3.3287 | 19050 | 0.2964 | | 0.1376 | 3.3374 | 19100 | 0.2978 | | 0.124 | 3.3461 | 19150 | 0.2986 | | 0.1312 | 3.3549 | 19200 | 0.2994 | | 0.1291 | 3.3636 | 19250 | 0.2993 | | 0.133 | 3.3724 | 19300 | 0.2972 | | 0.1265 | 3.3811 | 19350 | 0.2972 | | 0.1298 | 3.3898 | 19400 | 0.2987 | | 0.1345 | 3.3986 | 19450 | 0.2981 | | 0.1374 | 3.4073 | 19500 | 0.2973 | | 0.1232 | 3.4160 | 19550 | 0.2965 | | 0.1217 | 3.4248 | 19600 | 0.2968 | | 0.1156 | 3.4335 | 19650 | 0.2987 | | 0.1126 | 3.4423 | 19700 | 0.2981 | | 0.1301 | 3.4510 | 19750 | 0.2992 | | 0.1216 | 3.4597 | 19800 | 0.2990 | | 0.1246 | 3.4685 | 19850 | 0.2984 | | 0.14 | 3.4772 | 19900 | 0.2960 | | 0.1347 | 3.4859 | 19950 | 0.2974 | | 0.1282 | 3.4947 | 20000 | 0.2986 | | 0.1182 | 3.5034 | 20050 | 0.2987 | | 0.1185 | 3.5121 | 20100 | 0.2987 | | 0.1406 | 3.5209 | 20150 | 0.2966 | | 0.1336 | 3.5296 | 20200 | 0.2968 | | 0.1354 | 3.5384 | 20250 | 0.2975 | | 0.1283 | 3.5471 | 20300 | 0.2976 | | 0.1295 | 3.5558 | 20350 | 0.2988 | | 0.1226 | 3.5646 | 20400 | 0.2985 | | 0.1143 | 3.5733 | 20450 | 0.2971 | | 0.1302 | 3.5820 | 20500 | 0.2968 | | 0.1353 | 3.5908 | 20550 | 0.2986 | | 0.1378 | 3.5995 | 20600 | 0.2991 | | 0.1341 | 3.6082 | 20650 | 0.2978 | | 0.1269 | 3.6170 | 20700 | 0.2972 | | 0.1236 | 3.6257 | 20750 | 0.2969 | | 0.1253 | 3.6345 | 20800 | 0.2988 | | 0.1147 | 3.6432 | 20850 | 0.2985 | | 0.1266 | 3.6519 | 20900 | 0.2986 | | 0.1259 | 3.6607 | 20950 | 0.2982 | | 0.1158 | 3.6694 | 21000 | 0.2989 | | 0.1222 | 3.6781 | 21050 | 0.2980 | | 0.1295 | 3.6869 | 21100 | 0.2971 | | 0.1263 | 3.6956 | 21150 | 0.2972 | | 0.1254 | 3.7044 | 21200 | 0.2965 | | 0.1204 | 3.7131 | 21250 | 0.2964 | | 0.1283 | 3.7218 | 21300 | 0.2955 | | 0.1256 | 3.7306 | 21350 | 0.2959 | | 0.1375 | 3.7393 | 21400 | 0.2963 | | 0.1206 | 3.7480 | 21450 | 0.2965 | | 0.1309 | 3.7568 | 21500 | 0.2973 | | 0.1173 | 3.7655 | 21550 | 0.2994 | | 0.117 | 3.7742 | 21600 | 0.2989 | | 0.1249 | 3.7830 | 21650 | 0.2995 | | 0.129 | 3.7917 | 21700 | 0.2979 | | 0.1149 | 3.8005 | 21750 | 0.2981 | | 0.1262 | 3.8092 | 21800 | 0.2982 | | 0.1113 | 3.8179 | 21850 | 0.2984 | | 0.1135 | 3.8267 | 21900 | 0.2980 | | 0.1187 | 3.8354 | 21950 | 0.2972 | | 0.1161 | 3.8441 | 22000 | 0.2974 | | 0.131 | 3.8529 | 22050 | 0.2974 | | 0.1232 | 3.8616 | 22100 | 0.2980 | | 0.1188 | 3.8703 | 22150 | 0.2978 | | 0.1335 | 3.8791 | 22200 | 0.2977 | | 0.1375 | 3.8878 | 22250 | 0.2966 | | 0.1183 | 3.8966 | 22300 | 0.2969 | | 0.1139 | 3.9053 | 22350 | 0.2969 | | 0.1314 | 3.9140 | 22400 | 0.2970 | | 0.139 | 3.9228 | 22450 | 0.2969 | | 0.1296 | 3.9315 | 22500 | 0.2973 | | 0.1286 | 3.9402 | 22550 | 0.2969 | | 0.1248 | 3.9490 | 22600 | 0.2967 | | 0.1115 | 3.9577 | 22650 | 0.2968 | | 0.1195 | 3.9665 | 22700 | 0.2968 | | 0.1163 | 3.9752 | 22750 | 0.2967 | | 0.1305 | 3.9839 | 22800 | 0.2966 | | 0.119 | 3.9927 | 22850 | 0.2966 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1