--- base_model: codellama/CodeLlama-7b-Instruct-hf library_name: peft license: llama2 tags: - trl - sft - generated_from_trainer model-index: - name: Codellama-7b-lora-rps-adapter results: [] --- # Codellama-7b-lora-rps-adapter This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2962 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 0.1783 | 2.6210 | 15000 | 0.2850 | | 0.2042 | 2.6297 | 15050 | 0.2836 | | 0.1922 | 2.6385 | 15100 | 0.2850 | | 0.2053 | 2.6472 | 15150 | 0.2843 | | 0.1822 | 2.6559 | 15200 | 0.2850 | | 0.1842 | 2.6647 | 15250 | 0.2846 | | 0.1901 | 2.6734 | 15300 | 0.2821 | | 0.2031 | 2.6822 | 15350 | 0.2823 | | 0.1693 | 2.6909 | 15400 | 0.2825 | | 0.1768 | 2.6996 | 15450 | 0.2830 | | 0.1938 | 2.7084 | 15500 | 0.2841 | | 0.197 | 2.7171 | 15550 | 0.2823 | | 0.1857 | 2.7258 | 15600 | 0.2835 | | 0.183 | 2.7346 | 15650 | 0.2831 | | 0.1922 | 2.7433 | 15700 | 0.2836 | | 0.2197 | 2.7521 | 15750 | 0.2809 | | 0.1786 | 2.7608 | 15800 | 0.2813 | | 0.1866 | 2.7695 | 15850 | 0.2823 | | 0.1895 | 2.7783 | 15900 | 0.2817 | | 0.1854 | 2.7870 | 15950 | 0.2816 | | 0.1958 | 2.7957 | 16000 | 0.2840 | | 0.175 | 2.8045 | 16050 | 0.2830 | | 0.2112 | 2.8132 | 16100 | 0.2805 | | 0.1931 | 2.8219 | 16150 | 0.2830 | | 0.1953 | 2.8307 | 16200 | 0.2822 | | 0.1904 | 2.8394 | 16250 | 0.2830 | | 0.1913 | 2.8482 | 16300 | 0.2811 | | 0.1761 | 2.8569 | 16350 | 0.2814 | | 0.1972 | 2.8656 | 16400 | 0.2819 | | 0.2188 | 2.8744 | 16450 | 0.2801 | | 0.1888 | 2.8831 | 16500 | 0.2812 | | 0.1951 | 2.8918 | 16550 | 0.2792 | | 0.199 | 2.9006 | 16600 | 0.2809 | | 0.216 | 2.9093 | 16650 | 0.2798 | | 0.1954 | 2.9180 | 16700 | 0.2802 | | 0.1747 | 2.9268 | 16750 | 0.2816 | | 0.1631 | 2.9355 | 16800 | 0.2816 | | 0.1875 | 2.9443 | 16850 | 0.2800 | | 0.1959 | 2.9530 | 16900 | 0.2798 | | 0.1824 | 2.9617 | 16950 | 0.2796 | | 0.1838 | 2.9705 | 17000 | 0.2796 | | 0.1954 | 2.9792 | 17050 | 0.2803 | | 0.1941 | 2.9879 | 17100 | 0.2779 | | 0.1727 | 2.9967 | 17150 | 0.2790 | | 0.1544 | 3.0054 | 17200 | 0.2890 | | 0.1178 | 3.0142 | 17250 | 0.2980 | | 0.126 | 3.0229 | 17300 | 0.2999 | | 0.1133 | 3.0316 | 17350 | 0.2983 | | 0.1442 | 3.0404 | 17400 | 0.2994 | | 0.1201 | 3.0491 | 17450 | 0.3002 | | 0.1264 | 3.0578 | 17500 | 0.2985 | | 0.148 | 3.0666 | 17550 | 0.2993 | | 0.1367 | 3.0753 | 17600 | 0.2987 | | 0.1225 | 3.0840 | 17650 | 0.3007 | | 0.1323 | 3.0928 | 17700 | 0.3005 | | 0.1286 | 3.1015 | 17750 | 0.3022 | | 0.1181 | 3.1103 | 17800 | 0.3011 | | 0.1379 | 3.1190 | 17850 | 0.2992 | | 0.1331 | 3.1277 | 17900 | 0.3011 | | 0.1132 | 3.1365 | 17950 | 0.3037 | | 0.1232 | 3.1452 | 18000 | 0.3004 | | 0.1273 | 3.1539 | 18050 | 0.3008 | | 0.1232 | 3.1627 | 18100 | 0.3000 | | 0.1325 | 3.1714 | 18150 | 0.3011 | | 0.1296 | 3.1802 | 18200 | 0.3005 | | 0.1135 | 3.1889 | 18250 | 0.3011 | | 0.1237 | 3.1976 | 18300 | 0.2999 | | 0.1379 | 3.2064 | 18350 | 0.2991 | | 0.1278 | 3.2151 | 18400 | 0.3003 | | 0.1354 | 3.2238 | 18450 | 0.2991 | | 0.1234 | 3.2326 | 18500 | 0.3011 | | 0.1315 | 3.2413 | 18550 | 0.3025 | | 0.1173 | 3.2500 | 18600 | 0.3021 | | 0.1358 | 3.2588 | 18650 | 0.3016 | | 0.1383 | 3.2675 | 18700 | 0.2977 | | 0.1294 | 3.2763 | 18750 | 0.2982 | | 0.1372 | 3.2850 | 18800 | 0.2975 | | 0.1269 | 3.2937 | 18850 | 0.3013 | | 0.1338 | 3.3025 | 18900 | 0.2978 | | 0.1317 | 3.3112 | 18950 | 0.3032 | | 0.1179 | 3.3199 | 19000 | 0.2985 | | 0.142 | 3.3287 | 19050 | 0.2959 | | 0.1369 | 3.3374 | 19100 | 0.2995 | | 0.1237 | 3.3461 | 19150 | 0.2990 | | 0.1311 | 3.3549 | 19200 | 0.3002 | | 0.1287 | 3.3636 | 19250 | 0.2995 | | 0.1319 | 3.3724 | 19300 | 0.2988 | | 0.1262 | 3.3811 | 19350 | 0.2972 | | 0.129 | 3.3898 | 19400 | 0.3001 | | 0.1342 | 3.3986 | 19450 | 0.2977 | | 0.1396 | 3.4073 | 19500 | 0.2962 | | 0.1238 | 3.4160 | 19550 | 0.2959 | | 0.1195 | 3.4248 | 19600 | 0.2961 | | 0.1157 | 3.4335 | 19650 | 0.2987 | | 0.1121 | 3.4423 | 19700 | 0.2993 | | 0.1287 | 3.4510 | 19750 | 0.3004 | | 0.122 | 3.4597 | 19800 | 0.2997 | | 0.1232 | 3.4685 | 19850 | 0.2990 | | 0.1408 | 3.4772 | 19900 | 0.2953 | | 0.1335 | 3.4859 | 19950 | 0.2980 | | 0.1291 | 3.4947 | 20000 | 0.2982 | | 0.1172 | 3.5034 | 20050 | 0.2978 | | 0.1175 | 3.5121 | 20100 | 0.2963 | | 0.1406 | 3.5209 | 20150 | 0.2950 | | 0.1318 | 3.5296 | 20200 | 0.2967 | | 0.1339 | 3.5384 | 20250 | 0.2964 | | 0.1265 | 3.5471 | 20300 | 0.2960 | | 0.1295 | 3.5558 | 20350 | 0.2979 | | 0.1241 | 3.5646 | 20400 | 0.2978 | | 0.1148 | 3.5733 | 20450 | 0.2976 | | 0.1279 | 3.5820 | 20500 | 0.2967 | | 0.1354 | 3.5908 | 20550 | 0.2979 | | 0.1346 | 3.5995 | 20600 | 0.2993 | | 0.1335 | 3.6082 | 20650 | 0.2988 | | 0.1264 | 3.6170 | 20700 | 0.2980 | | 0.1224 | 3.6257 | 20750 | 0.2979 | | 0.1261 | 3.6345 | 20800 | 0.2993 | | 0.115 | 3.6432 | 20850 | 0.2983 | | 0.1254 | 3.6519 | 20900 | 0.2983 | | 0.1253 | 3.6607 | 20950 | 0.2982 | | 0.1176 | 3.6694 | 21000 | 0.2982 | | 0.1214 | 3.6781 | 21050 | 0.2984 | | 0.1285 | 3.6869 | 21100 | 0.2980 | | 0.1265 | 3.6956 | 21150 | 0.2979 | | 0.1266 | 3.7044 | 21200 | 0.2957 | | 0.1212 | 3.7131 | 21250 | 0.2961 | | 0.1283 | 3.7218 | 21300 | 0.2957 | | 0.1251 | 3.7306 | 21350 | 0.2962 | | 0.136 | 3.7393 | 21400 | 0.2973 | | 0.1206 | 3.7480 | 21450 | 0.2963 | | 0.1316 | 3.7568 | 21500 | 0.2977 | | 0.1163 | 3.7655 | 21550 | 0.2996 | | 0.1152 | 3.7742 | 21600 | 0.2998 | | 0.1268 | 3.7830 | 21650 | 0.2992 | | 0.1268 | 3.7917 | 21700 | 0.2978 | | 0.1169 | 3.8005 | 21750 | 0.2974 | | 0.126 | 3.8092 | 21800 | 0.2980 | | 0.1112 | 3.8179 | 21850 | 0.2978 | | 0.1152 | 3.8267 | 21900 | 0.2972 | | 0.1181 | 3.8354 | 21950 | 0.2967 | | 0.1177 | 3.8441 | 22000 | 0.2968 | | 0.1308 | 3.8529 | 22050 | 0.2963 | | 0.1221 | 3.8616 | 22100 | 0.2966 | | 0.1187 | 3.8703 | 22150 | 0.2966 | | 0.1326 | 3.8791 | 22200 | 0.2967 | | 0.1363 | 3.8878 | 22250 | 0.2961 | | 0.1178 | 3.8966 | 22300 | 0.2962 | | 0.1126 | 3.9053 | 22350 | 0.2961 | | 0.1318 | 3.9140 | 22400 | 0.2962 | | 0.1404 | 3.9228 | 22450 | 0.2961 | | 0.1299 | 3.9315 | 22500 | 0.2965 | | 0.1245 | 3.9402 | 22550 | 0.2966 | | 0.1259 | 3.9490 | 22600 | 0.2962 | | 0.1116 | 3.9577 | 22650 | 0.2963 | | 0.1176 | 3.9665 | 22700 | 0.2963 | | 0.117 | 3.9752 | 22750 | 0.2961 | | 0.1287 | 3.9839 | 22800 | 0.2962 | | 0.1162 | 3.9927 | 22850 | 0.2962 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1