--- tags: - autotrain - tabular - classification - tabular-classification datasets: - dark-gbf-xgboost2/autotrain-data --- # Model Trained Using AutoTrain - Problem type: Tabular classification ## Validation Metrics - logloss: 0.08323427141158712 - accuracy: 0.98 - mlogloss: 0.08323427141158712 - f1_macro: 0.8266666666666665 - f1_micro: 0.98 - f1_weighted: 0.9793333333333333 - precision_macro: 0.8666666666666666 - precision_micro: 0.98 - precision_weighted: 0.9833333333333333 - recall_macro: 0.8333333333333333 - recall_micro: 0.98 - recall_weighted: 0.98 - loss: 0.08323427141158712 ## Best Params - learning_rate: 0.16433034910560887 - reg_lambda: 3.7914578973926436 - reg_alpha: 2.806649620056883e-07 - subsample: 0.7396301555452317 - colsample_bytree: 0.9137471530067593 - max_depth: 6 - early_stopping_rounds: 383 - n_estimators: 15000 - eval_metric: mlogloss ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] predictions = model.predict(data) # or model.predict_proba(data) # predictions can be converted to original labels using label_encoders.pkl ```