File size: 2,186 Bytes
6982d5b 6b537e8 6982d5b 6b537e8 6982d5b 6b537e8 6982d5b 6b537e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
from transformers.image_processing_utils import ImageProcessingMixin, BatchFeature
from torchvision.transforms import transforms as tf
import torchvision.transforms.functional as F
from PIL import Image
import torch
class CondViTProcessor(ImageProcessingMixin):
def __init__(
self,
bkg_color=255,
input_resolution=224,
image_mean=(0.48145466, 0.4578275, 0.40821073),
image_std=(0.26862954, 0.26130258, 0.27577711),
**kwargs,
):
super().__init__(**kwargs)
self.bkg_color = bkg_color
self.input_resolution = input_resolution
self.image_mean = image_mean
self.image_std = image_std
def square_pad(self, image):
max_wh = max(image.size)
p_left, p_top = [(max_wh - s) // 2 for s in image.size]
p_right, p_bottom = [
max_wh - (s + pad) for s, pad in zip(image.size, [p_left, p_top])
]
padding = (p_left, p_top, p_right, p_bottom)
return F.pad(image, padding, self.bkg_color, "constant")
def process_img(self, image):
img = self.square_pad(image)
img = F.resize(img, self.input_resolution)
img = F.to_tensor(img)
img = F.normalize(img, self.image_mean, self.image_std)
return img
def __call__(self, images, texts=None):
"""
Parameters
----------
images : Union[Image.Image, List[Image.Image]]
Image or list of images to process
texts : Union[str, List[str]]
Text or list of texts to process. Pass through, no operation is performed.
Returns
-------
BatchFeature
pixel_values : torch.Tensor
Processed image tensor (B C H W)
texts : Union[str, List[str]]
"""
# Single Image
data = {}
if isinstance(images, Image.Image):
data["pixel_values"] = self.process_img(images)
else:
data["pixel_values"] = torch.stack(
[self.process_img(img) for img in images]
)
if texts is not None:
data["texts"] = texts
return BatchFeature(data=data)
|