Slep commited on
Commit
fa2f5fd
1 Parent(s): 8d61815

Upload CondViTForEmbedding

Browse files
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "__debug_save",
3
+ "architectures": [
4
+ "CondViTForEmbedding"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "hf_model.CondViTConfig",
8
+ "AutoModel": "hf_model.CondViTForEmbedding"
9
+ },
10
+ "device": "cpu",
11
+ "heads": 12,
12
+ "input_resolution": 224,
13
+ "layers": 12,
14
+ "lm_backbone": "sentence-transformers/sentence-t5-xl",
15
+ "lm_revision": "e0976ba9afd18be963c22c680367a3928c44fd22",
16
+ "model_type": "condvit",
17
+ "n_categories": 10,
18
+ "output_dim": 512,
19
+ "patch_size": 16,
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.37.1",
22
+ "width": 768
23
+ }
hf_model.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PreTrainedModel, PretrainedConfig
2
+ from .module import ConditionalViT
3
+
4
+ from sentence_transformers import SentenceTransformer
5
+
6
+
7
+ class CondViTConfig(PretrainedConfig):
8
+ model_type = "condvit"
9
+
10
+ def __init__(
11
+ self,
12
+ input_resolution: int = 224,
13
+ patch_size: int = 16,
14
+ width: int = 768,
15
+ layers: int = 12,
16
+ heads: int = 12,
17
+ output_dim: int = 512,
18
+ n_categories: int = 10,
19
+ lm_backbone: str = "sentence-transformers/sentence-t5-xl",
20
+ lm_revision: str = "e0976ba9afd18be963c22c680367a3928c44fd22",
21
+ device: str = "cpu",
22
+ **kwargs
23
+ ):
24
+ self.input_resolution = input_resolution
25
+ self.patch_size = patch_size
26
+ self.width = width
27
+ self.layers = layers
28
+ self.heads = heads
29
+ self.output_dim = output_dim
30
+ self.n_categories = n_categories
31
+
32
+ self.lm_backbone = lm_backbone
33
+ self.lm_revision = lm_revision
34
+
35
+ self.device = device
36
+
37
+ super().__init__(**kwargs)
38
+
39
+
40
+ class CondViTForEmbedding(PreTrainedModel):
41
+ config_class = CondViTConfig
42
+
43
+ def __init__(self, config):
44
+ super().__init__(config)
45
+
46
+ self.condvit = ConditionalViT(
47
+ input_resolution=config.input_resolution,
48
+ patch_size=config.patch_size,
49
+ width=config.width,
50
+ layers=config.layers,
51
+ heads=config.heads,
52
+ output_dim=config.output_dim,
53
+ )
54
+ if config.device:
55
+ self.condvit.to(config.device)
56
+
57
+ self.lm = SentenceTransformer(
58
+ config.lm_backbone, revision=config.lm_revision, device=config.device
59
+ )
60
+
61
+ def forward(self, pixel_values, texts=None):
62
+ if texts is not None:
63
+ text_embeddings = self.lm.encode(
64
+ texts,
65
+ convert_to_tensor=True,
66
+ convert_to_numpy=False,
67
+ )
68
+ text_embeddings = text_embeddings.to(pixel_values.device)
69
+ else:
70
+ text_embeddings = None
71
+ return self.condvit(imgs=pixel_values, c=text_embeddings)
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55b611cb11b4bf73bf8715538c3be0240daabdd2a48314c214e5cfa9c1adb742
3
+ size 4972895436
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:339d88b3be497bb3333457701c9487260fc0a270388a3029d6869322d83ee3d5
3
+ size 338708184
model.safetensors.index.json ADDED
@@ -0,0 +1,357 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 5311558660
4
+ },
5
+ "weight_map": {
6
+ "condvit.c_pos_embedding": "model-00001-of-00002.safetensors",
7
+ "condvit.class_embedding": "model-00001-of-00002.safetensors",
8
+ "condvit.conv1.weight": "model-00001-of-00002.safetensors",
9
+ "condvit.ln_post.bias": "model-00001-of-00002.safetensors",
10
+ "condvit.ln_post.weight": "model-00001-of-00002.safetensors",
11
+ "condvit.ln_pre.bias": "model-00001-of-00002.safetensors",
12
+ "condvit.ln_pre.weight": "model-00001-of-00002.safetensors",
13
+ "condvit.logit_scale": "model-00001-of-00002.safetensors",
14
+ "condvit.positional_embedding": "model-00001-of-00002.safetensors",
15
+ "condvit.proj.weight": "model-00001-of-00002.safetensors",
16
+ "condvit.transformer.resblocks.0.attn.in_proj_bias": "model-00001-of-00002.safetensors",
17
+ "condvit.transformer.resblocks.0.attn.in_proj_weight": "model-00001-of-00002.safetensors",
18
+ "condvit.transformer.resblocks.0.attn.out_proj.bias": "model-00001-of-00002.safetensors",
19
+ "condvit.transformer.resblocks.0.attn.out_proj.weight": "model-00001-of-00002.safetensors",
20
+ "condvit.transformer.resblocks.0.ln_1.bias": "model-00001-of-00002.safetensors",
21
+ "condvit.transformer.resblocks.0.ln_1.weight": "model-00001-of-00002.safetensors",
22
+ "condvit.transformer.resblocks.0.ln_2.bias": "model-00001-of-00002.safetensors",
23
+ "condvit.transformer.resblocks.0.ln_2.weight": "model-00001-of-00002.safetensors",
24
+ "condvit.transformer.resblocks.0.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
25
+ "condvit.transformer.resblocks.0.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
26
+ "condvit.transformer.resblocks.0.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
27
+ "condvit.transformer.resblocks.0.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
28
+ "condvit.transformer.resblocks.1.attn.in_proj_bias": "model-00001-of-00002.safetensors",
29
+ "condvit.transformer.resblocks.1.attn.in_proj_weight": "model-00001-of-00002.safetensors",
30
+ "condvit.transformer.resblocks.1.attn.out_proj.bias": "model-00001-of-00002.safetensors",
31
+ "condvit.transformer.resblocks.1.attn.out_proj.weight": "model-00001-of-00002.safetensors",
32
+ "condvit.transformer.resblocks.1.ln_1.bias": "model-00001-of-00002.safetensors",
33
+ "condvit.transformer.resblocks.1.ln_1.weight": "model-00001-of-00002.safetensors",
34
+ "condvit.transformer.resblocks.1.ln_2.bias": "model-00001-of-00002.safetensors",
35
+ "condvit.transformer.resblocks.1.ln_2.weight": "model-00001-of-00002.safetensors",
36
+ "condvit.transformer.resblocks.1.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
37
+ "condvit.transformer.resblocks.1.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
38
+ "condvit.transformer.resblocks.1.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
39
+ "condvit.transformer.resblocks.1.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
40
+ "condvit.transformer.resblocks.10.attn.in_proj_bias": "model-00001-of-00002.safetensors",
41
+ "condvit.transformer.resblocks.10.attn.in_proj_weight": "model-00001-of-00002.safetensors",
42
+ "condvit.transformer.resblocks.10.attn.out_proj.bias": "model-00001-of-00002.safetensors",
43
+ "condvit.transformer.resblocks.10.attn.out_proj.weight": "model-00001-of-00002.safetensors",
44
+ "condvit.transformer.resblocks.10.ln_1.bias": "model-00001-of-00002.safetensors",
45
+ "condvit.transformer.resblocks.10.ln_1.weight": "model-00001-of-00002.safetensors",
46
+ "condvit.transformer.resblocks.10.ln_2.bias": "model-00001-of-00002.safetensors",
47
+ "condvit.transformer.resblocks.10.ln_2.weight": "model-00001-of-00002.safetensors",
48
+ "condvit.transformer.resblocks.10.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
49
+ "condvit.transformer.resblocks.10.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
50
+ "condvit.transformer.resblocks.10.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
51
+ "condvit.transformer.resblocks.10.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
52
+ "condvit.transformer.resblocks.11.attn.in_proj_bias": "model-00001-of-00002.safetensors",
53
+ "condvit.transformer.resblocks.11.attn.in_proj_weight": "model-00001-of-00002.safetensors",
54
+ "condvit.transformer.resblocks.11.attn.out_proj.bias": "model-00001-of-00002.safetensors",
55
+ "condvit.transformer.resblocks.11.attn.out_proj.weight": "model-00001-of-00002.safetensors",
56
+ "condvit.transformer.resblocks.11.ln_1.bias": "model-00001-of-00002.safetensors",
57
+ "condvit.transformer.resblocks.11.ln_1.weight": "model-00001-of-00002.safetensors",
58
+ "condvit.transformer.resblocks.11.ln_2.bias": "model-00001-of-00002.safetensors",
59
+ "condvit.transformer.resblocks.11.ln_2.weight": "model-00001-of-00002.safetensors",
60
+ "condvit.transformer.resblocks.11.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
61
+ "condvit.transformer.resblocks.11.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
62
+ "condvit.transformer.resblocks.11.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
63
+ "condvit.transformer.resblocks.11.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
64
+ "condvit.transformer.resblocks.2.attn.in_proj_bias": "model-00001-of-00002.safetensors",
65
+ "condvit.transformer.resblocks.2.attn.in_proj_weight": "model-00001-of-00002.safetensors",
66
+ "condvit.transformer.resblocks.2.attn.out_proj.bias": "model-00001-of-00002.safetensors",
67
+ "condvit.transformer.resblocks.2.attn.out_proj.weight": "model-00001-of-00002.safetensors",
68
+ "condvit.transformer.resblocks.2.ln_1.bias": "model-00001-of-00002.safetensors",
69
+ "condvit.transformer.resblocks.2.ln_1.weight": "model-00001-of-00002.safetensors",
70
+ "condvit.transformer.resblocks.2.ln_2.bias": "model-00001-of-00002.safetensors",
71
+ "condvit.transformer.resblocks.2.ln_2.weight": "model-00001-of-00002.safetensors",
72
+ "condvit.transformer.resblocks.2.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
73
+ "condvit.transformer.resblocks.2.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
74
+ "condvit.transformer.resblocks.2.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
75
+ "condvit.transformer.resblocks.2.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
76
+ "condvit.transformer.resblocks.3.attn.in_proj_bias": "model-00001-of-00002.safetensors",
77
+ "condvit.transformer.resblocks.3.attn.in_proj_weight": "model-00001-of-00002.safetensors",
78
+ "condvit.transformer.resblocks.3.attn.out_proj.bias": "model-00001-of-00002.safetensors",
79
+ "condvit.transformer.resblocks.3.attn.out_proj.weight": "model-00001-of-00002.safetensors",
80
+ "condvit.transformer.resblocks.3.ln_1.bias": "model-00001-of-00002.safetensors",
81
+ "condvit.transformer.resblocks.3.ln_1.weight": "model-00001-of-00002.safetensors",
82
+ "condvit.transformer.resblocks.3.ln_2.bias": "model-00001-of-00002.safetensors",
83
+ "condvit.transformer.resblocks.3.ln_2.weight": "model-00001-of-00002.safetensors",
84
+ "condvit.transformer.resblocks.3.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
85
+ "condvit.transformer.resblocks.3.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
86
+ "condvit.transformer.resblocks.3.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
87
+ "condvit.transformer.resblocks.3.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
88
+ "condvit.transformer.resblocks.4.attn.in_proj_bias": "model-00001-of-00002.safetensors",
89
+ "condvit.transformer.resblocks.4.attn.in_proj_weight": "model-00001-of-00002.safetensors",
90
+ "condvit.transformer.resblocks.4.attn.out_proj.bias": "model-00001-of-00002.safetensors",
91
+ "condvit.transformer.resblocks.4.attn.out_proj.weight": "model-00001-of-00002.safetensors",
92
+ "condvit.transformer.resblocks.4.ln_1.bias": "model-00001-of-00002.safetensors",
93
+ "condvit.transformer.resblocks.4.ln_1.weight": "model-00001-of-00002.safetensors",
94
+ "condvit.transformer.resblocks.4.ln_2.bias": "model-00001-of-00002.safetensors",
95
+ "condvit.transformer.resblocks.4.ln_2.weight": "model-00001-of-00002.safetensors",
96
+ "condvit.transformer.resblocks.4.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
97
+ "condvit.transformer.resblocks.4.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
98
+ "condvit.transformer.resblocks.4.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
99
+ "condvit.transformer.resblocks.4.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
100
+ "condvit.transformer.resblocks.5.attn.in_proj_bias": "model-00001-of-00002.safetensors",
101
+ "condvit.transformer.resblocks.5.attn.in_proj_weight": "model-00001-of-00002.safetensors",
102
+ "condvit.transformer.resblocks.5.attn.out_proj.bias": "model-00001-of-00002.safetensors",
103
+ "condvit.transformer.resblocks.5.attn.out_proj.weight": "model-00001-of-00002.safetensors",
104
+ "condvit.transformer.resblocks.5.ln_1.bias": "model-00001-of-00002.safetensors",
105
+ "condvit.transformer.resblocks.5.ln_1.weight": "model-00001-of-00002.safetensors",
106
+ "condvit.transformer.resblocks.5.ln_2.bias": "model-00001-of-00002.safetensors",
107
+ "condvit.transformer.resblocks.5.ln_2.weight": "model-00001-of-00002.safetensors",
108
+ "condvit.transformer.resblocks.5.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
109
+ "condvit.transformer.resblocks.5.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
110
+ "condvit.transformer.resblocks.5.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
111
+ "condvit.transformer.resblocks.5.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
112
+ "condvit.transformer.resblocks.6.attn.in_proj_bias": "model-00001-of-00002.safetensors",
113
+ "condvit.transformer.resblocks.6.attn.in_proj_weight": "model-00001-of-00002.safetensors",
114
+ "condvit.transformer.resblocks.6.attn.out_proj.bias": "model-00001-of-00002.safetensors",
115
+ "condvit.transformer.resblocks.6.attn.out_proj.weight": "model-00001-of-00002.safetensors",
116
+ "condvit.transformer.resblocks.6.ln_1.bias": "model-00001-of-00002.safetensors",
117
+ "condvit.transformer.resblocks.6.ln_1.weight": "model-00001-of-00002.safetensors",
118
+ "condvit.transformer.resblocks.6.ln_2.bias": "model-00001-of-00002.safetensors",
119
+ "condvit.transformer.resblocks.6.ln_2.weight": "model-00001-of-00002.safetensors",
120
+ "condvit.transformer.resblocks.6.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
121
+ "condvit.transformer.resblocks.6.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
122
+ "condvit.transformer.resblocks.6.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
123
+ "condvit.transformer.resblocks.6.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
124
+ "condvit.transformer.resblocks.7.attn.in_proj_bias": "model-00001-of-00002.safetensors",
125
+ "condvit.transformer.resblocks.7.attn.in_proj_weight": "model-00001-of-00002.safetensors",
126
+ "condvit.transformer.resblocks.7.attn.out_proj.bias": "model-00001-of-00002.safetensors",
127
+ "condvit.transformer.resblocks.7.attn.out_proj.weight": "model-00001-of-00002.safetensors",
128
+ "condvit.transformer.resblocks.7.ln_1.bias": "model-00001-of-00002.safetensors",
129
+ "condvit.transformer.resblocks.7.ln_1.weight": "model-00001-of-00002.safetensors",
130
+ "condvit.transformer.resblocks.7.ln_2.bias": "model-00001-of-00002.safetensors",
131
+ "condvit.transformer.resblocks.7.ln_2.weight": "model-00001-of-00002.safetensors",
132
+ "condvit.transformer.resblocks.7.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
133
+ "condvit.transformer.resblocks.7.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
134
+ "condvit.transformer.resblocks.7.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
135
+ "condvit.transformer.resblocks.7.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
136
+ "condvit.transformer.resblocks.8.attn.in_proj_bias": "model-00001-of-00002.safetensors",
137
+ "condvit.transformer.resblocks.8.attn.in_proj_weight": "model-00001-of-00002.safetensors",
138
+ "condvit.transformer.resblocks.8.attn.out_proj.bias": "model-00001-of-00002.safetensors",
139
+ "condvit.transformer.resblocks.8.attn.out_proj.weight": "model-00001-of-00002.safetensors",
140
+ "condvit.transformer.resblocks.8.ln_1.bias": "model-00001-of-00002.safetensors",
141
+ "condvit.transformer.resblocks.8.ln_1.weight": "model-00001-of-00002.safetensors",
142
+ "condvit.transformer.resblocks.8.ln_2.bias": "model-00001-of-00002.safetensors",
143
+ "condvit.transformer.resblocks.8.ln_2.weight": "model-00001-of-00002.safetensors",
144
+ "condvit.transformer.resblocks.8.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
145
+ "condvit.transformer.resblocks.8.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
146
+ "condvit.transformer.resblocks.8.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
147
+ "condvit.transformer.resblocks.8.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
148
+ "condvit.transformer.resblocks.9.attn.in_proj_bias": "model-00001-of-00002.safetensors",
149
+ "condvit.transformer.resblocks.9.attn.in_proj_weight": "model-00001-of-00002.safetensors",
150
+ "condvit.transformer.resblocks.9.attn.out_proj.bias": "model-00001-of-00002.safetensors",
151
+ "condvit.transformer.resblocks.9.attn.out_proj.weight": "model-00001-of-00002.safetensors",
152
+ "condvit.transformer.resblocks.9.ln_1.bias": "model-00001-of-00002.safetensors",
153
+ "condvit.transformer.resblocks.9.ln_1.weight": "model-00001-of-00002.safetensors",
154
+ "condvit.transformer.resblocks.9.ln_2.bias": "model-00001-of-00002.safetensors",
155
+ "condvit.transformer.resblocks.9.ln_2.weight": "model-00001-of-00002.safetensors",
156
+ "condvit.transformer.resblocks.9.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
157
+ "condvit.transformer.resblocks.9.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
158
+ "condvit.transformer.resblocks.9.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
159
+ "condvit.transformer.resblocks.9.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
160
+ "lm.0.auto_model.encoder.block.0.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
161
+ "lm.0.auto_model.encoder.block.0.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
162
+ "lm.0.auto_model.encoder.block.0.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
163
+ "lm.0.auto_model.encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight": "model-00001-of-00002.safetensors",
164
+ "lm.0.auto_model.encoder.block.0.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
165
+ "lm.0.auto_model.encoder.block.0.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
166
+ "lm.0.auto_model.encoder.block.0.layer.1.DenseReluDense.wi.weight": "model-00001-of-00002.safetensors",
167
+ "lm.0.auto_model.encoder.block.0.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
168
+ "lm.0.auto_model.encoder.block.0.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
169
+ "lm.0.auto_model.encoder.block.1.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
170
+ "lm.0.auto_model.encoder.block.1.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
171
+ "lm.0.auto_model.encoder.block.1.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
172
+ "lm.0.auto_model.encoder.block.1.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
173
+ "lm.0.auto_model.encoder.block.1.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
174
+ "lm.0.auto_model.encoder.block.1.layer.1.DenseReluDense.wi.weight": "model-00001-of-00002.safetensors",
175
+ "lm.0.auto_model.encoder.block.1.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
176
+ "lm.0.auto_model.encoder.block.1.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
177
+ "lm.0.auto_model.encoder.block.10.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
178
+ "lm.0.auto_model.encoder.block.10.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
179
+ "lm.0.auto_model.encoder.block.10.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
180
+ "lm.0.auto_model.encoder.block.10.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
181
+ "lm.0.auto_model.encoder.block.10.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
182
+ "lm.0.auto_model.encoder.block.10.layer.1.DenseReluDense.wi.weight": "model-00001-of-00002.safetensors",
183
+ "lm.0.auto_model.encoder.block.10.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
184
+ "lm.0.auto_model.encoder.block.10.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
185
+ "lm.0.auto_model.encoder.block.11.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
186
+ "lm.0.auto_model.encoder.block.11.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
187
+ "lm.0.auto_model.encoder.block.11.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
188
+ "lm.0.auto_model.encoder.block.11.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
189
+ "lm.0.auto_model.encoder.block.11.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
190
+ "lm.0.auto_model.encoder.block.11.layer.1.DenseReluDense.wi.weight": "model-00001-of-00002.safetensors",
191
+ "lm.0.auto_model.encoder.block.11.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
192
+ "lm.0.auto_model.encoder.block.11.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
193
+ "lm.0.auto_model.encoder.block.12.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
194
+ "lm.0.auto_model.encoder.block.12.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
195
+ "lm.0.auto_model.encoder.block.12.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
196
+ "lm.0.auto_model.encoder.block.12.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
197
+ "lm.0.auto_model.encoder.block.12.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
198
+ "lm.0.auto_model.encoder.block.12.layer.1.DenseReluDense.wi.weight": "model-00001-of-00002.safetensors",
199
+ "lm.0.auto_model.encoder.block.12.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
200
+ "lm.0.auto_model.encoder.block.12.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
201
+ "lm.0.auto_model.encoder.block.13.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
202
+ "lm.0.auto_model.encoder.block.13.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
203
+ "lm.0.auto_model.encoder.block.13.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
204
+ "lm.0.auto_model.encoder.block.13.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
205
+ "lm.0.auto_model.encoder.block.13.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
206
+ "lm.0.auto_model.encoder.block.13.layer.1.DenseReluDense.wi.weight": "model-00001-of-00002.safetensors",
207
+ "lm.0.auto_model.encoder.block.13.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
208
+ "lm.0.auto_model.encoder.block.13.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
209
+ "lm.0.auto_model.encoder.block.14.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
210
+ "lm.0.auto_model.encoder.block.14.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
211
+ "lm.0.auto_model.encoder.block.14.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
212
+ "lm.0.auto_model.encoder.block.14.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
213
+ "lm.0.auto_model.encoder.block.14.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
214
+ "lm.0.auto_model.encoder.block.14.layer.1.DenseReluDense.wi.weight": "model-00001-of-00002.safetensors",
215
+ "lm.0.auto_model.encoder.block.14.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
216
+ "lm.0.auto_model.encoder.block.14.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
217
+ "lm.0.auto_model.encoder.block.15.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
218
+ "lm.0.auto_model.encoder.block.15.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
219
+ "lm.0.auto_model.encoder.block.15.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
220
+ "lm.0.auto_model.encoder.block.15.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
221
+ "lm.0.auto_model.encoder.block.15.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
222
+ "lm.0.auto_model.encoder.block.15.layer.1.DenseReluDense.wi.weight": "model-00001-of-00002.safetensors",
223
+ "lm.0.auto_model.encoder.block.15.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
224
+ "lm.0.auto_model.encoder.block.15.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
225
+ "lm.0.auto_model.encoder.block.16.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
226
+ "lm.0.auto_model.encoder.block.16.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
227
+ "lm.0.auto_model.encoder.block.16.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
228
+ "lm.0.auto_model.encoder.block.16.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
229
+ "lm.0.auto_model.encoder.block.16.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
230
+ "lm.0.auto_model.encoder.block.16.layer.1.DenseReluDense.wi.weight": "model-00001-of-00002.safetensors",
231
+ "lm.0.auto_model.encoder.block.16.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
232
+ "lm.0.auto_model.encoder.block.16.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
233
+ "lm.0.auto_model.encoder.block.17.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
234
+ "lm.0.auto_model.encoder.block.17.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
235
+ "lm.0.auto_model.encoder.block.17.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
236
+ "lm.0.auto_model.encoder.block.17.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
237
+ "lm.0.auto_model.encoder.block.17.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
238
+ "lm.0.auto_model.encoder.block.17.layer.1.DenseReluDense.wi.weight": "model-00001-of-00002.safetensors",
239
+ "lm.0.auto_model.encoder.block.17.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
240
+ "lm.0.auto_model.encoder.block.17.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
241
+ "lm.0.auto_model.encoder.block.18.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
242
+ "lm.0.auto_model.encoder.block.18.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
243
+ "lm.0.auto_model.encoder.block.18.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
244
+ "lm.0.auto_model.encoder.block.18.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
245
+ "lm.0.auto_model.encoder.block.18.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
246
+ "lm.0.auto_model.encoder.block.18.layer.1.DenseReluDense.wi.weight": "model-00001-of-00002.safetensors",
247
+ "lm.0.auto_model.encoder.block.18.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
248
+ "lm.0.auto_model.encoder.block.18.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
249
+ "lm.0.auto_model.encoder.block.19.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
250
+ "lm.0.auto_model.encoder.block.19.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
251
+ "lm.0.auto_model.encoder.block.19.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
252
+ "lm.0.auto_model.encoder.block.19.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
253
+ "lm.0.auto_model.encoder.block.19.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
254
+ "lm.0.auto_model.encoder.block.19.layer.1.DenseReluDense.wi.weight": "model-00001-of-00002.safetensors",
255
+ "lm.0.auto_model.encoder.block.19.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
256
+ "lm.0.auto_model.encoder.block.19.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
257
+ "lm.0.auto_model.encoder.block.2.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
258
+ "lm.0.auto_model.encoder.block.2.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
259
+ "lm.0.auto_model.encoder.block.2.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
260
+ "lm.0.auto_model.encoder.block.2.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
261
+ "lm.0.auto_model.encoder.block.2.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
262
+ "lm.0.auto_model.encoder.block.2.layer.1.DenseReluDense.wi.weight": "model-00001-of-00002.safetensors",
263
+ "lm.0.auto_model.encoder.block.2.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
264
+ "lm.0.auto_model.encoder.block.2.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
265
+ "lm.0.auto_model.encoder.block.20.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
266
+ "lm.0.auto_model.encoder.block.20.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
267
+ "lm.0.auto_model.encoder.block.20.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
268
+ "lm.0.auto_model.encoder.block.20.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
269
+ "lm.0.auto_model.encoder.block.20.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
270
+ "lm.0.auto_model.encoder.block.20.layer.1.DenseReluDense.wi.weight": "model-00001-of-00002.safetensors",
271
+ "lm.0.auto_model.encoder.block.20.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
272
+ "lm.0.auto_model.encoder.block.20.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
273
+ "lm.0.auto_model.encoder.block.21.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
274
+ "lm.0.auto_model.encoder.block.21.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
275
+ "lm.0.auto_model.encoder.block.21.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
276
+ "lm.0.auto_model.encoder.block.21.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
277
+ "lm.0.auto_model.encoder.block.21.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
278
+ "lm.0.auto_model.encoder.block.21.layer.1.DenseReluDense.wi.weight": "model-00001-of-00002.safetensors",
279
+ "lm.0.auto_model.encoder.block.21.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
280
+ "lm.0.auto_model.encoder.block.21.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
281
+ "lm.0.auto_model.encoder.block.22.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
282
+ "lm.0.auto_model.encoder.block.22.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
283
+ "lm.0.auto_model.encoder.block.22.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
284
+ "lm.0.auto_model.encoder.block.22.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
285
+ "lm.0.auto_model.encoder.block.22.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
286
+ "lm.0.auto_model.encoder.block.22.layer.1.DenseReluDense.wi.weight": "model-00002-of-00002.safetensors",
287
+ "lm.0.auto_model.encoder.block.22.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
288
+ "lm.0.auto_model.encoder.block.22.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
289
+ "lm.0.auto_model.encoder.block.23.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
290
+ "lm.0.auto_model.encoder.block.23.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
291
+ "lm.0.auto_model.encoder.block.23.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
292
+ "lm.0.auto_model.encoder.block.23.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
293
+ "lm.0.auto_model.encoder.block.23.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
294
+ "lm.0.auto_model.encoder.block.23.layer.1.DenseReluDense.wi.weight": "model-00002-of-00002.safetensors",
295
+ "lm.0.auto_model.encoder.block.23.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
296
+ "lm.0.auto_model.encoder.block.23.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
297
+ "lm.0.auto_model.encoder.block.3.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
298
+ "lm.0.auto_model.encoder.block.3.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
299
+ "lm.0.auto_model.encoder.block.3.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
300
+ "lm.0.auto_model.encoder.block.3.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
301
+ "lm.0.auto_model.encoder.block.3.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
302
+ "lm.0.auto_model.encoder.block.3.layer.1.DenseReluDense.wi.weight": "model-00001-of-00002.safetensors",
303
+ "lm.0.auto_model.encoder.block.3.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
304
+ "lm.0.auto_model.encoder.block.3.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
305
+ "lm.0.auto_model.encoder.block.4.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
306
+ "lm.0.auto_model.encoder.block.4.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
307
+ "lm.0.auto_model.encoder.block.4.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
308
+ "lm.0.auto_model.encoder.block.4.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
309
+ "lm.0.auto_model.encoder.block.4.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
310
+ "lm.0.auto_model.encoder.block.4.layer.1.DenseReluDense.wi.weight": "model-00001-of-00002.safetensors",
311
+ "lm.0.auto_model.encoder.block.4.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
312
+ "lm.0.auto_model.encoder.block.4.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
313
+ "lm.0.auto_model.encoder.block.5.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
314
+ "lm.0.auto_model.encoder.block.5.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
315
+ "lm.0.auto_model.encoder.block.5.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
316
+ "lm.0.auto_model.encoder.block.5.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
317
+ "lm.0.auto_model.encoder.block.5.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
318
+ "lm.0.auto_model.encoder.block.5.layer.1.DenseReluDense.wi.weight": "model-00001-of-00002.safetensors",
319
+ "lm.0.auto_model.encoder.block.5.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
320
+ "lm.0.auto_model.encoder.block.5.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
321
+ "lm.0.auto_model.encoder.block.6.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
322
+ "lm.0.auto_model.encoder.block.6.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
323
+ "lm.0.auto_model.encoder.block.6.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
324
+ "lm.0.auto_model.encoder.block.6.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
325
+ "lm.0.auto_model.encoder.block.6.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
326
+ "lm.0.auto_model.encoder.block.6.layer.1.DenseReluDense.wi.weight": "model-00001-of-00002.safetensors",
327
+ "lm.0.auto_model.encoder.block.6.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
328
+ "lm.0.auto_model.encoder.block.6.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
329
+ "lm.0.auto_model.encoder.block.7.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
330
+ "lm.0.auto_model.encoder.block.7.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
331
+ "lm.0.auto_model.encoder.block.7.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
332
+ "lm.0.auto_model.encoder.block.7.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
333
+ "lm.0.auto_model.encoder.block.7.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
334
+ "lm.0.auto_model.encoder.block.7.layer.1.DenseReluDense.wi.weight": "model-00001-of-00002.safetensors",
335
+ "lm.0.auto_model.encoder.block.7.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
336
+ "lm.0.auto_model.encoder.block.7.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
337
+ "lm.0.auto_model.encoder.block.8.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
338
+ "lm.0.auto_model.encoder.block.8.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
339
+ "lm.0.auto_model.encoder.block.8.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
340
+ "lm.0.auto_model.encoder.block.8.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
341
+ "lm.0.auto_model.encoder.block.8.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
342
+ "lm.0.auto_model.encoder.block.8.layer.1.DenseReluDense.wi.weight": "model-00001-of-00002.safetensors",
343
+ "lm.0.auto_model.encoder.block.8.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
344
+ "lm.0.auto_model.encoder.block.8.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
345
+ "lm.0.auto_model.encoder.block.9.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
346
+ "lm.0.auto_model.encoder.block.9.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
347
+ "lm.0.auto_model.encoder.block.9.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
348
+ "lm.0.auto_model.encoder.block.9.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
349
+ "lm.0.auto_model.encoder.block.9.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
350
+ "lm.0.auto_model.encoder.block.9.layer.1.DenseReluDense.wi.weight": "model-00001-of-00002.safetensors",
351
+ "lm.0.auto_model.encoder.block.9.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
352
+ "lm.0.auto_model.encoder.block.9.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
353
+ "lm.0.auto_model.encoder.final_layer_norm.weight": "model-00002-of-00002.safetensors",
354
+ "lm.0.auto_model.shared.weight": "model-00001-of-00002.safetensors",
355
+ "lm.2.linear.weight": "model-00002-of-00002.safetensors"
356
+ }
357
+ }
module.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+ from collections import OrderedDict
5
+ import logging
6
+
7
+ logger = logging.getLogger(__name__)
8
+
9
+
10
+ class LayerNorm(nn.LayerNorm):
11
+ """Subclass torch's LayerNorm to handle fp16."""
12
+
13
+ def forward(self, x: torch.Tensor):
14
+ if self.weight.dtype != x.dtype:
15
+ orig_type = x.dtype
16
+ ret = super().forward(x.type(self.weight.dtype))
17
+ return ret.type(orig_type)
18
+ else:
19
+ return super().forward(x)
20
+
21
+
22
+ class QuickGELU(nn.Module):
23
+ def forward(self, x: torch.Tensor):
24
+ return x * torch.sigmoid(1.702 * x)
25
+
26
+
27
+ class ResidualAttentionBlock(nn.Module):
28
+ def __init__(
29
+ self,
30
+ d_model: int,
31
+ n_head: int,
32
+ attn_mask: torch.Tensor = None,
33
+ ):
34
+ super().__init__()
35
+
36
+ self.attn = nn.MultiheadAttention(d_model, n_head)
37
+ self.ln_1 = LayerNorm(d_model)
38
+ self.mlp = nn.Sequential(
39
+ OrderedDict(
40
+ [
41
+ (
42
+ "c_fc",
43
+ nn.Linear(d_model, d_model * 4),
44
+ ),
45
+ ("gelu", QuickGELU()),
46
+ (
47
+ "c_proj",
48
+ nn.Linear(d_model * 4, d_model),
49
+ ),
50
+ ]
51
+ )
52
+ )
53
+ self.ln_2 = LayerNorm(d_model)
54
+ self.attn_mask = attn_mask
55
+
56
+ def attention(self, x: torch.Tensor):
57
+ self.attn_mask = (
58
+ self.attn_mask.to(dtype=x.dtype, device=x.device)
59
+ if self.attn_mask is not None
60
+ else None
61
+ )
62
+ return self.attn(
63
+ x,
64
+ x,
65
+ x,
66
+ need_weights=False,
67
+ attn_mask=self.attn_mask,
68
+ )[0]
69
+
70
+ def forward(self, x: torch.Tensor):
71
+ x = x + self.attention(self.ln_1(x))
72
+ x = x + self.mlp(self.ln_2(x))
73
+ return x
74
+
75
+
76
+ class Transformer(nn.Module):
77
+ def __init__(
78
+ self,
79
+ width: int,
80
+ layers: int,
81
+ heads: int,
82
+ attn_mask: torch.Tensor = None,
83
+ ):
84
+ super().__init__()
85
+ self.width = width
86
+ self.layers = layers
87
+ self.resblocks = nn.Sequential(
88
+ *[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]
89
+ )
90
+
91
+ def forward(self, x: torch.Tensor):
92
+ return self.resblocks(x)
93
+
94
+
95
+ class ConditionalViT(nn.Module):
96
+ def __init__(
97
+ self,
98
+ input_resolution: int,
99
+ patch_size: int,
100
+ width: int,
101
+ layers: int,
102
+ heads: int,
103
+ output_dim: int,
104
+ ):
105
+ super().__init__()
106
+ self.input_resolution = input_resolution
107
+ self.output_dim = output_dim
108
+ self.conv1 = nn.Conv2d(
109
+ in_channels=3,
110
+ out_channels=width,
111
+ kernel_size=patch_size,
112
+ stride=patch_size,
113
+ bias=False,
114
+ )
115
+
116
+ scale = width**-0.5
117
+
118
+ self.class_embedding = nn.Parameter(scale * torch.randn(width))
119
+
120
+ self.c_pos_embedding = nn.Parameter(scale * torch.randn(1, width))
121
+
122
+ self.positional_embedding = nn.Parameter(
123
+ scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)
124
+ )
125
+ self.ln_pre = LayerNorm(width)
126
+
127
+ self.transformer = Transformer(width, layers, heads)
128
+ self.ln_post = LayerNorm(width)
129
+ self.logit_scale = torch.nn.Parameter(torch.ones([]) * 4.6052)
130
+
131
+ self.proj = nn.Linear(width, output_dim, bias=False)
132
+
133
+ def forward(self, imgs: torch.Tensor, c: torch.Tensor = None):
134
+ """
135
+ imgs : Batch of images
136
+ c : Text embedding.
137
+ """
138
+
139
+ x = self.conv1(imgs) # shape = [*, width, grid, grid]
140
+ # shape = [*, width, grid ** 2]
141
+ x = x.reshape(x.shape[0], x.shape[1], -1)
142
+ x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
143
+
144
+ # Gather CLS, Grid, maybe CAT, and positional embedding
145
+ tokens = [self.class_embedding.tile(x.shape[0], 1, 1), x] # NLD
146
+ pos_embed = [self.positional_embedding] # LD
147
+
148
+ if c is not None:
149
+ pos_embed += [self.c_pos_embedding] # +1D -> N1D
150
+ tokens += [c.unsqueeze(1)]
151
+
152
+ x = torch.cat(tokens, dim=1) # shape = [*, grid ** 2 + 1|2, width] = N(L|L+1)D
153
+ pos_embed = torch.cat(pos_embed, dim=0).unsqueeze(0) # 1(L|L+1)D
154
+
155
+ x = x + pos_embed
156
+ x = self.ln_pre(x)
157
+
158
+ x = x.permute(1, 0, 2) # NLD -> LND
159
+
160
+ x = self.transformer(x)
161
+ x = x.permute(1, 0, 2) # LND -> NLD
162
+
163
+ x = self.ln_post(x[:, 0, :])
164
+
165
+ x = self.proj(x)
166
+
167
+ return x