Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,14 @@
|
|
1 |
-
|
2 |
-
import uvicorn
|
3 |
import tensorflow as tf
|
4 |
from tensorflow import keras
|
5 |
from keras import models
|
6 |
from PIL import Image
|
7 |
-
from io import BytesIO
|
8 |
import numpy as np
|
9 |
import cv2
|
|
|
10 |
|
11 |
# Some constants to be used in the program
|
12 |
IMG_SIZE = (32,32)
|
13 |
-
APP_HOST = '127.0.1.1'
|
14 |
-
APP_PORT = '5000'
|
15 |
|
16 |
# Character mapping for the character prediction
|
17 |
char_map = {
|
@@ -25,41 +22,35 @@ char_map = {
|
|
25 |
56:'๐ฌ(RA)', 57: '๐ฎ(LA)', 58:'๐ฐ(WA)', 59:'๐ฑ(SHA)', 60: '๐ฑ(SHA-alt)', 61: '๐ฒ(SSA)', 62: '๐ณ(SA)', 63: '๐ด(HA)'
|
26 |
}
|
27 |
|
28 |
-
|
29 |
-
|
30 |
# Importing the model
|
31 |
-
model = models.load_model('
|
32 |
-
|
33 |
-
|
34 |
-
# Defining the FastAPI instance here
|
35 |
-
app = FastAPI()
|
36 |
|
37 |
# Function for reading image
|
38 |
-
def file_to_array(
|
39 |
-
image = np.array(Image.open(BytesIO(
|
40 |
|
41 |
return image
|
42 |
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
async def root_func():
|
46 |
-
return {'message': 'this is the root function'}
|
47 |
-
|
48 |
-
|
49 |
-
@app.post('/predict_image')
|
50 |
-
async def upload_image(file: UploadFile = File(...)):
|
51 |
-
image = Image.open(BytesIO(await file.read()))
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
if __name__ == "__main__":
|
65 |
-
|
|
|
1 |
+
import streamlit as st
|
|
|
2 |
import tensorflow as tf
|
3 |
from tensorflow import keras
|
4 |
from keras import models
|
5 |
from PIL import Image
|
|
|
6 |
import numpy as np
|
7 |
import cv2
|
8 |
+
import io
|
9 |
|
10 |
# Some constants to be used in the program
|
11 |
IMG_SIZE = (32,32)
|
|
|
|
|
12 |
|
13 |
# Character mapping for the character prediction
|
14 |
char_map = {
|
|
|
22 |
56:'๐ฌ(RA)', 57: '๐ฎ(LA)', 58:'๐ฐ(WA)', 59:'๐ฑ(SHA)', 60: '๐ฑ(SHA-alt)', 61: '๐ฒ(SSA)', 62: '๐ณ(SA)', 63: '๐ด(HA)'
|
23 |
}
|
24 |
|
|
|
|
|
25 |
# Importing the model
|
26 |
+
model = models.load_model('tf_model.h5')
|
|
|
|
|
|
|
|
|
27 |
|
28 |
# Function for reading image
|
29 |
+
def file_to_array(file) -> np.ndarray:
|
30 |
+
image = np.array(Image.open(io.BytesIO(file)))
|
31 |
|
32 |
return image
|
33 |
|
34 |
+
# Main Streamlit app
|
35 |
+
def main():
|
36 |
+
st.title("Character Recognition")
|
37 |
+
st.write("Upload an image and the model will predict the character")
|
38 |
|
39 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
if uploaded_file is not None:
|
42 |
+
image = Image.open(uploaded_file)
|
43 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
44 |
|
45 |
+
if st.button('Predict'):
|
46 |
+
image = cv2.resize(np.array(image), IMG_SIZE)
|
47 |
+
image = image.astype('float32')
|
48 |
+
image = np.expand_dims(image, axis=0)
|
49 |
|
50 |
+
output = model.predict(image)
|
51 |
+
result = char_map[np.argmax(output)]
|
52 |
+
|
53 |
+
st.success(f'Prediction: {result}')
|
54 |
|
|
|
55 |
if __name__ == "__main__":
|
56 |
+
main()
|