---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: model.joblib
---
# Model description
[More Information Needed]
## Intended uses & limitations
[More Information Needed]
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
Click to expand
| Hyperparameter | Value |
|------------------------------------------------------|----------------------------------------------------------------|
| memory | |
| steps | [('feature_extraction', ColumnTransformer(transformers=[('abbreviations',
<__main__.ELFAbbreviationTransformer object at 0x7f38e082e4f0>,
0),
('tokenizer',
CountVectorizer(binary=True, lowercase=False,
tokenizer=<__main__.LegalEntityTokenizer object at 0x7f38e082ee50>),
0)])), ('classifier', ComplementNB())] |
| verbose | False |
| feature_extraction | ColumnTransformer(transformers=[('abbreviations',
<__main__.ELFAbbreviationTransformer object at 0x7f38e082e4f0>,
0),
('tokenizer',
CountVectorizer(binary=True, lowercase=False,
tokenizer=<__main__.LegalEntityTokenizer object at 0x7f38e082ee50>),
0)]) |
| classifier | ComplementNB() |
| feature_extraction__n_jobs | |
| feature_extraction__remainder | drop |
| feature_extraction__sparse_threshold | 0.3 |
| feature_extraction__transformer_weights | |
| feature_extraction__transformers | [('abbreviations', <__main__.ELFAbbreviationTransformer object at 0x7f38e082e4f0>, 0), ('tokenizer', CountVectorizer(binary=True, lowercase=False,
tokenizer=<__main__.LegalEntityTokenizer object at 0x7f38e082ee50>), 0)] |
| feature_extraction__verbose | False |
| feature_extraction__verbose_feature_names_out | True |
| feature_extraction__abbreviations | <__main__.ELFAbbreviationTransformer object at 0x7f38e082e4f0> |
| feature_extraction__tokenizer | CountVectorizer(binary=True, lowercase=False,
tokenizer=<__main__.LegalEntityTokenizer object at 0x7f38e082ee50>) |
| feature_extraction__abbreviations__elf_abbreviations | <__main__.ELFAbbreviations object at 0x7f38f438b670> |
| feature_extraction__abbreviations__jurisdiction | PL |
| feature_extraction__abbreviations__use_endswith | True |
| feature_extraction__abbreviations__use_lowercasing | True |
| feature_extraction__tokenizer__analyzer | word |
| feature_extraction__tokenizer__binary | True |
| feature_extraction__tokenizer__decode_error | strict |
| feature_extraction__tokenizer__dtype |
Pipeline(steps=[('feature_extraction',ColumnTransformer(transformers=[('abbreviations',<__main__.ELFAbbreviationTransformer object at 0x7f38e082e4f0>,0),('tokenizer',CountVectorizer(binary=True,lowercase=False,tokenizer=<__main__.LegalEntityTokenizer object at 0x7f38e082ee50>),0)])),('classifier', ComplementNB())])Please rerun this cell to show the HTML repr or trust the notebook.
Pipeline(steps=[('feature_extraction',ColumnTransformer(transformers=[('abbreviations',<__main__.ELFAbbreviationTransformer object at 0x7f38e082e4f0>,0),('tokenizer',CountVectorizer(binary=True,lowercase=False,tokenizer=<__main__.LegalEntityTokenizer object at 0x7f38e082ee50>),0)])),('classifier', ComplementNB())])
ColumnTransformer(transformers=[('abbreviations',<__main__.ELFAbbreviationTransformer object at 0x7f38e082e4f0>,0),('tokenizer',CountVectorizer(binary=True, lowercase=False,tokenizer=<__main__.LegalEntityTokenizer object at 0x7f38e082ee50>),0)])
0
<__main__.ELFAbbreviationTransformer object at 0x7f38e082e4f0>
0
CountVectorizer(binary=True, lowercase=False,tokenizer=<__main__.LegalEntityTokenizer object at 0x7f38e082ee50>)
ComplementNB()