--- license: mit tags: - generated_from_trainer datasets: - wikiann metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-wikiann-hi results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: hi metrics: - name: F1 type: f1 value: 1.0 --- # xlm-roberta-base-finetuned-wikiann-hi This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.2293 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:---:| | 0.5631 | 1.0 | 209 | 0.3163 | 1.0 | | 0.2445 | 2.0 | 418 | 0.2265 | 1.0 | | 0.1497 | 3.0 | 627 | 0.2293 | 1.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1