File size: 2,342 Bytes
b85d99c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
language:
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper Small en - Stan
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fleurs
type: google/fleurs
config: en_us
split: None
args: 'config: en, split: test'
metrics:
- name: Wer
type: wer
value: 8.637757947573899
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small en - Stan
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3236
- Wer: 8.6378
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.5755 | 0.61 | 100 | 0.5716 | 8.6029 |
| 0.1769 | 1.23 | 200 | 0.2722 | 8.3659 |
| 0.1153 | 1.84 | 300 | 0.2791 | 8.7842 |
| 0.0356 | 2.45 | 400 | 0.2852 | 8.7981 |
| 0.0208 | 3.07 | 500 | 0.2923 | 8.6866 |
| 0.0105 | 3.68 | 600 | 0.3050 | 8.6517 |
| 0.0032 | 4.29 | 700 | 0.3126 | 8.6238 |
| 0.0033 | 4.91 | 800 | 0.3174 | 8.6308 |
| 0.0028 | 5.52 | 900 | 0.3227 | 8.5611 |
| 0.0017 | 6.13 | 1000 | 0.3236 | 8.6378 |
### Framework versions
- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|