File size: 1,159 Bytes
364a4b6 5c8adfd 364a4b6 5c8adfd 364a4b6 5c8adfd 364a4b6 5c8adfd 364a4b6 5c8adfd 364a4b6 5c8adfd 364a4b6 5c8adfd 364a4b6 5c8adfd 364a4b6 5c8adfd 535c9db 364a4b6 6f85465 5c8adfd 364a4b6 5c8adfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
---
library_name: diffusers
pipeline_tag: image-to-image
license: apache-2.0
---
# Model Card for StableNormal
This repository contains the weights of StableNormal: Reducing Diffusion Variance for Stable and Sharp Normal
## Usage
See the Github repository: https://github.com/Stable-X/StableNormal regarding installation instructions.
The model can then be used as follows:
```python
import torch
from PIL import Image
# Load an image
input_image = Image.open("path/to/your/image.jpg")
# Create predictor instance
predictor = torch.hub.load("hugoycj/StableNormal", "StableNormal_turbo", trust_repo=True, yoso_version='yoso-normal-v1-5')
# Generate normal map using alpha channel for masking
normal_map = predictor(rgba_image, data_type="object") # Will mask out background, if alpha channel is avalible, else use birefnet
normal_map = predictor(rgba_image, data_type="outdoor") # Will use Mask2Former to mask out sky and plants
normal_map = predictor(rgba_image, data_type="indoor") # Will not mask out
# Apply the model to the image
normal_image = predictor(input_image)
# Save or display the result
normal_image.save("output/normal_map.png")
``` |