--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.79 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6862 - Accuracy: 0.79 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1654 | 1.0 | 45 | 2.0737 | 0.46 | | 1.6926 | 2.0 | 90 | 1.5669 | 0.55 | | 1.2793 | 3.0 | 135 | 1.1986 | 0.77 | | 1.0386 | 4.0 | 180 | 1.0169 | 0.78 | | 0.9172 | 5.0 | 225 | 0.9652 | 0.71 | | 0.7859 | 6.0 | 270 | 0.7929 | 0.79 | | 0.7468 | 7.0 | 315 | 0.7860 | 0.75 | | 0.6594 | 8.0 | 360 | 0.7388 | 0.79 | | 0.471 | 9.0 | 405 | 0.6955 | 0.79 | | 0.5886 | 10.0 | 450 | 0.6862 | 0.79 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3